Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Botanica Marina

Editor-in-Chief: Dring, Matthew J.


IMPACT FACTOR 2018: 0.919
5-year IMPACT FACTOR: 1.336

CiteScore 2018: 1.22

SCImago Journal Rank (SJR) 2018: 0.399
Source Normalized Impact per Paper (SNIP) 2018: 0.672

Online
ISSN
1437-4323
See all formats and pricing
More options …
Volume 57, Issue 2

Issues

Evaluation of repopulation techniques for the giant kelp Macrocystis pyrifera (Laminariales)

Ximena Vásquez / Alfonso Gutiérrez / Alejandro H. Buschmann / Roberto Flores / Daniela Farías / Pamela Leal
Published Online: 2014-03-29 | DOI: https://doi.org/10.1515/bot-2014-0005

Abstract

In Chile, the brown alga Macrocystis pyrifera has been subject to strong harvesting pressure, resulting in severe reduction of natural beds, and a threat to the sustainability of the resource. Repopulation is a possible means for the recovery of overexploited natural populations of M. pyrifera. In this study, we determined density (ind. cm-2), length (mm) and biomass (g) of M. pyrifera sporophytes sown on three types of substrata (ceramic plates, pot scrubbers, clam shells). In laboratory experiments, sporophytes on ceramic plates were significantly longer than those on pot scrubbers or shells after 60 days, and their density was also higher. Juvenile sporophytes seeded on the three substrata were transferred to the sea and placed either inside or outside a M. pyrifera forest. At the end of the experiment in the sea under the kelp forest, highest biomass and length were obtained on the clam shell substrates, but the density did not show significant differences between the substrates. However, outside the kelp forest, no significant differences in kelp density or length were observed between the three substrates tested; but the biomass was significantly higher on the clam shells than on the other two substrata. We conclude that the installation of kelp seeded substratum units may be an option for recovery of exploited M. pyrifera forests.

Keywords: biomass; Macrocystis pyrifera; repopulation; sporophytes; substratum

References

  • Adami, M. and S. Gordillo. 1999. Structure and dynamics of the biota associated with Macrocystis pyrifera (Phaeophyta) from the Beagle Channel, Tierra del Fuego. Sci. Mar. 63: 183–191.Google Scholar

  • Almanza, V. and A. H. Buschmann. 2013. The ecological importance of Macrocystis pyrifera (Phaeophyta) forests towards a sustainable management and exploitation of Chilean coastal benthic co-management areas. Int. J. Env. Sustain. Develop. 12: 341–360.CrossrefGoogle Scholar

  • Almanza, V., A.H. Buschmann, M.C. Hernández-González and L. Henríquez. 2012. Can giant kelp (Macrocystis pyrifera) forests enhance invertebrate recruitment in southern Chile? Mar. Biol. Res. 8: 855–864.CrossrefWeb of ScienceGoogle Scholar

  • Avila, M., B. Santelices and J. McLachlan. 1986. Photoperiod and temperature regulation of the life history of Porphyra columbina (Rhodophyta, Bangiales) from central Chile. Can. J. Bot. 64: 1867–1872.CrossrefGoogle Scholar

  • Avila, M., R. Otaiza, R. Norambuena, R. Narváez, M. Candia and A. Poblete. 1995. Development of cultivation technology and repopulation of Luga negra in X region. Unidad Técnica Ediciones, Instituto de Fomento Pesquero, Puerto Montt. Chile. pp. 97.Google Scholar

  • Bixler, H. and H. Porse. 2011. A decade of change in the seaweed hydrocolloids industry. J. Appl. Phycol. 23: 321–335.CrossrefWeb of ScienceGoogle Scholar

  • Buschmann, A.H., C. Moreno, J.A. Vásquez and M.C. Hernández-González. 2006. Reproduction strategies of Macrocystis pyrifera (Phaeophyta) in Southern Chile: The importance of population dynamics. J. Appl. Phycol. 18: 575–582.CrossrefGoogle Scholar

  • Buschmann, A.H., D.A. Varela, M.C. Hernández-González and P. Huovinen. 2008. Opportunities and challenges for the development of an integrated seaweed-based aquaculture activity in Chile: Determining the physiological capabilities of Macrocystis and Gracilaria as biofilters. J. Appl. Phycol. 20: 571–577.Web of ScienceCrossrefGoogle Scholar

  • Buschmann, A.H., S. Prescott, P. Potin, S. Faugeron, J.A. Vásquez, C. Camus, J. Infante, M.C. Hernández-González, A. Gutiérrez and D.A. Varela. The status of kelp exploitation and marine agronomy, with emphasis on Macrocystis pyrifera in Chile. Adv. Bot. Res. (in press).Google Scholar

  • Clark, R.P., M.S. Edwards and M.S. Foster. 2004. Effect of shade from multiple kelp canopies on an understory algal assemblage. Ecol. Mar. Progr. Ser. 267: 107–119.Google Scholar

  • Correa, J.A., A.N. Lagos, M.H. Medina, J.C. Castilla, M. Cerda, M. Ramírez, E. Martínez, S. Faugeron, S. Andrade, R. Pinto and L. Contreras. 2006. Experimental transplants of the large kelp Lessonia nigrescens (Phaeophyceae) in high-energy wave exposed rocky intertidal habitats of northern Chile: Experimental, restoration and management applications. J. Exp. Mar. Biol. Ecol. 335: 13–18.Google Scholar

  • Craigie, J.S. 2011. Seaweed extract stimuli in plant science and agriculture. J. Appl. Phycol. 23: 371–393.Web of ScienceCrossrefGoogle Scholar

  • Foster, M.S. and D.R. Schiel. 1985. The ecology of giant kelp forests in California: a community profile. U. S. Fish Wildl. Serv. Biol. Rep. 85: 1–152.Google Scholar

  • Graham, M.H. 1997. Factors determining the upper limit of giant kelp, Macrocystis pyrifera Agardh, along the Monterey Peninsula, central California, USA. J. Exp. Mar. Biol. Ecol. 218: 127–149.CrossrefGoogle Scholar

  • Graham, M.H., J.A. Vásquez and A.H. Buschmann. 2007. Global ecology of the giant kelp Macrocystis: from ecotypes to ecosystem. Oceanogr. Mar. Biol. 45: 39–88.Google Scholar

  • Gutiérrez, A., T. Correa, V. Muñoz, A. Santibañez, R. Marcos, C. Caceres and A.H. Buschmann. 2006. Farming of the giant kelp Macrocystis pyrifera in southern Chile for development of novel food products. J. Appl. Phycol. 18: 259–267.CrossrefGoogle Scholar

  • Henríquez, L.A., A.H. Buschmann, M.A. Maldonado, M.H. Graham, M.C. Hernández-González, S.V. Pereda and M.I. Bobadilla. 2011. Grazing of giant kelp microscopic phases and the recruitment success of annual populations of Macrocystis pyrifera (Laminariales Phaeophyta) in southern Chile. J. Phycol. 47: 252–258.Web of ScienceCrossrefGoogle Scholar

  • Hernández-Carmona, G., O. García, D. Robledo and M. Foster. 2000. Restoration techniques for Macrocystis pyrifera (Phaeophyceae) populations at the southern limit of the distribution in Mexico. Bot. Mar. 43: 273–284.Google Scholar

  • Hernández-Carmona, G., B. Hughes and M.H. Graham. 2006. Reproductive longevity of drifting kelp Macrocystis pyrifera (Phaeophyceae) in Monterey Bay, USA. J. Phycol. 42: 1199–1207.CrossrefGoogle Scholar

  • Jeréz, G. and M. Figueroa. 2008. Desafíos y perspectivas de la repoblación de moluscos bivalvos en Chile, In: (Lovatelli, A. et al., eds.) Estado actual del cultivo y manejo de moluscos bivalvos y su proyección futura: factores que afectan su sustentabilidad en América Latina. Taller Técnico Regional de la FAO, Puerto Montt, Chile. FAO Actas de Pesca y Acuicultura, 12. pp. 223–235.Google Scholar

  • King, P.P. and W.J. Broderip. 1832. Description of the Cirripeda, Conchifera and Mollusca in a collection formed by the officies of HMS Adventure and Beagle employed between the years 1826 and 1830 in surveying the southern coasts of South America including the Straits of Magellan and the Coast of Tierra del Fuego. Zoological Journal 5: 332–349.Google Scholar

  • Kovalenko, I., B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov and G. Yushin 2011. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334: 75–79.Web of ScienceGoogle Scholar

  • Ladah, L., J. Zertuche-González and G. Hernández-Carmona. 1999. Giant kelp (Macrocystis pyrifera, Phaeophyceae) recruitment near its southern limit in Baja California after mass disappearance during ENSO 1997–1998. J. Phycol. 35: 1106–1112.Google Scholar

  • Lembi, C.A. and J.R. Waaland. 1988. Algae and Human Affairs. Cambridge, University Press, New York, USA. pp. 590.Google Scholar

  • Macaya, E. 2001. Use of carpospores for the culture of Chondracantus chamissoi (C. Agardh). Thesis Universidad Católica del Norte, Facultad de Ciencias del Mar, Coquimbo,Chile. pp. 68–91.Google Scholar

  • McGowan, J.A. and P.W. Walker. 1985. Dominance and diversity maintenance in an oceanic ecosystem. Ecol. Mono. 55: 103–118.CrossrefGoogle Scholar

  • McLachlan, J. 1973. Growth media – marine. In: Stein J (ed.), Handbook of Phycological Methods. Culture Methods and Growth Measurements, Cambridge University Press, Cambridge, 2: 25–51.Google Scholar

  • McPeak, R. and C. Barilotti. 1993. Techniques for managing and restoring Macrocystis pyrifera kelp forest in California, USA. Universidad Católica del Norte, Facultad de Ciencias del Mar, Coquimbo, Chile. Serie Ocasional.pp. 271–284.Google Scholar

  • North, W.J. 1971. The biology of giant kelp beds (Macrocystis) in California: introduction and background. Nova Hedw. Heft. 32: 1–97.Google Scholar

  • North, W.J. 1976. Aquaculture techniques for creating and restoring beds of giant kelp, Macrocystis spp. J. Fish. Res. Board Can. 33: 1015–1023.CrossrefGoogle Scholar

  • North, W.J. 1979. Evaluation, handling and culture of Macrocystis beds. In: (B. Santelices, ed.) Actas I Symposium Algas Marinas Chilenas. Ministerio de Economía y Reconstrucción, Santiago, Chile. pp. 21–24.Google Scholar

  • Palacios, M. and A. Mansilla. 2003. Development of gametophytes and sporophytes of Macrocystis pyrifera (L.) C. Agardh (Laminariales: Lessoniaceae) of the Magallanes region in laboratory conditions. Anal. Inst. Patag. 31: 43–53.Google Scholar

  • Petrell, R.J., K. Mazhari Tabrizi, P.J. Harrison and L.D. Druehl. 1993. Mathematical model of Laminaria production near a British Columbian salmon sea cage farm. J. Appl. Phycol. 5: 1–14.CrossrefGoogle Scholar

  • Reed, D.C. and M.S. Foster. 1984. The effect of canopy shading on algal recruitment and growth in a giant kelp (Macrocystis pyrifera) forest. Ecology 65: 937–948.CrossrefGoogle Scholar

  • Reed, D.C., C.D. Amsler and A.W. Ebeling. 1992. Dispersal in kelps: factors affecting spore swimming and competency. Ecology 73: 1577–1585.Google Scholar

  • Sahoo, D. and C. Yarish. 2005. Mariculture of seaweeds. In: (R. A. Andersen, ed.). Algal culturing techniques. Elsevier Academic Press, Burlington, US. pp. 219–237.Google Scholar

  • Santelices, B. and F.P. Ojeda. 1984. Effects of canopy removal on the understory algal community structure of coastal forest of Macrocystis pyrifera from Southern South America. Mar. Ecol. Prog. Ser. 14: 165–173.CrossrefGoogle Scholar

  • Terawaki, T., K. Yoshikawa, G. Yoshida, M. Uchimura and K. Iseki. 2003. Ecology and restoration techniques for Sargassum beds in the Seto Inland sea, Japan. Mar. Pollut. Bull. 47: 198–201.CrossrefPubMedGoogle Scholar

  • Vásquez, J.A. 2008. Production, use and fate of Chilean brown seaweeds: resources for a sustainable fishery. J. Appl. Phycol. 20: 457–467.CrossrefWeb of ScienceGoogle Scholar

  • Vásquez, J.A. and F. Tala. 1995. Repopulation of intertidal areas with Lessonia nigrescens in northern Chile. J. Appl.Phycol. 7: 347–349.CrossrefGoogle Scholar

  • Vásquez, J.A., J.M. Vega and A.H. Buschmann. 2005. Biology of the subtidal kelps Macrocystis integrifolia and Lessonia trabeculata (Laminariales, Phaeophyceae) in an upwelling ecosystem of northern Chile: interannual variability and El Niño 1997 – 98. Rev. Chil. Hist. Nat. 78: 33–50.Google Scholar

  • Vásquez, J.A., N. Piaget and J.M.A. Vega. 2012. Chilean Lessonia nigrescens fishery in northern Chile: How do you harvest is more important than how much do you harvest. J. Appl. Phycol. 24: 417–426.CrossrefGoogle Scholar

  • Vásquez, J.A., S. Zuñiga, F. Tala, N. Piaget, D.C. Rodriguez and J.M.A. Vega. 2014. Economic evaluation of kelp forest in northern Chile: values of good and service of the ecosystem. J. Appl. Phycol. DOI 10.1007/s10811-013-0173-6.CrossrefGoogle Scholar

  • Westermeier, R. and P. Möller. 1990. Population dynamics of Macrocystis pyrifera in the rocky intertidal of southern Chile. Bot. Mar. 33: 363–367.Google Scholar

  • Westermeier, R., P.J. Rivera and I. Gómez. 1988. The use of polyethylene as a substrate sleeves stocking of Gracilaria sp (Rhodophyta, Gigartinales) in southern Chile. Gayana Bot. 45: 95–106.Google Scholar

  • Westermeier, R., D. Patiño, P. Murúa, L. Muñoz, A. Ruiz and C. Atero. 2012. Manual de repoblamiento de Macrocystis integrifolia en la región de Atacama. Proyecto FIC FNDR 2010. Región de Atacama. Universidad Austral de Chile. pp. 47.Google Scholar

  • Westermeier, R., P. Murúa, D. Patiño, L. Muñoz, A. Ruiz, C. Atero and D. Müller. 2013. Utilization of holdfast fragments for vegetative propagation of Macrocystis integrifolia in Atacama, Northern Chile. J. Appl. Phycol. 25: 639–642.CrossrefGoogle Scholar

About the article

Corresponding author: Alfonso Gutiérrez, Centro i-mar, Universidad de Los Lagos, Chinquihue km 6, casilla 557, Puerto Montt, Chile, e-mail:


Received: 2014-01-31

Accepted: 2014-03-06

Published Online: 2014-03-29

Published in Print: 2014-04-01


Citation Information: Botanica Marina, Volume 57, Issue 2, Pages 123–130, ISSN (Online) 1437-4323, ISSN (Print) 0006-8055, DOI: https://doi.org/10.1515/bot-2014-0005.

Export Citation

©2014 by Walter de Gruyter Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Renato Westermeier, Pedro Murúa, David J. Patiño, Gabriela Manoli, and Dieter G. Müller
Journal of Applied Phycology, 2018

Comments (0)

Please log in or register to comment.
Log in