Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Botanica Marina

Editor-in-Chief: Dring, Matthew J.

IMPACT FACTOR 2017: 0.989
5-year IMPACT FACTOR: 1.204

CiteScore 2017: 1.00

SCImago Journal Rank (SJR) 2017: 0.297
Source Normalized Impact per Paper (SNIP) 2017: 0.454

See all formats and pricing
More options …
Volume 57, Issue 3


Enhancement of carrageenan gel quality in the commercially important tropical seaweed Eucheuma denticulatum (Rhodophyta), with postharvest treatment in low-nutrient conditions

Ronald D. Villanueva
  • Corresponding author
  • The Marine Science Institute, College of Science, University of the Philippines Diliman, 1101 Quezon City, Philippines
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marco Nemesio E. Montaño
  • The Marine Science Institute, College of Science, University of the Philippines Diliman, 1101 Quezon City, Philippines
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-05-15 | DOI: https://doi.org/10.1515/bot-2013-0124


The potential of postharvest culture in low-nutrient conditions was evaluated in terms of enhancement of carrageenan gel quality in the tropical seaweed Eucheuma denticulatum (“spinosum” of commerce) and as an alternative to industrial alkali treatment. Postharvest batch culture of seaweeds with either initially low or high nutrient concentrations (both ending with low nutrient concentrations) produced native carrageenans that had significantly higher gel strengths (48 g cm-2 in both treatments) than those treated with continuous culture in high nutrient concentrations (18 g cm-2). The gel strength of native carrageenans from batch-cultured seaweeds was also significantly higher than that of both native and alkali-treated carrageenans from seaweeds that had not undergone postharvest culture (11 and 29 g cm-2, respectively). The mechanism indicated for the enhancement of carrageenan gel quality involves stopping the production of precursor (galactose-6-sulfate) and converting the preexisting precursor to 3,6-anhydrogalactose units through in vivo enzymatic action. Postharvest batch culture with low nutrient concentrations is considered to be an eco-friendly alternative to industrial alkali treatment in the enhancement of carrageenan gel quality.

Keywords: alkali treatment; Eucheuma denticulatum; gel strength; seaweed farming; sulfohydrolase


  • Al-Alawi, A.A., I.M. Al-Marhubi, M.S.M. Al-Belushi and B. Soussi. 2011. Characterization of carrageenan extracted from Hypnea bryoides in Oman. Mar. Biotechnol. 13: 893–899.CrossrefGoogle Scholar

  • Arvizu-Higuera, D.L., Y.E. Rodríguez-Montesinos, J.L. Murillo-Àlvarez, M. Muñoz-Ochoa and G. Hernández-Carmona. 2008. Effect of alkali treatment time and extraction time on the agar from Gracilaria vermiculophylla. J. Appl. Phycol. 20: 515–519.CrossrefGoogle Scholar

  • Bixler, H.J. and H. Porse. 2011. A decade of change in the seaweed hydrocolloids industry. J. Appl. Phycol. 23: 321–335.CrossrefWeb of ScienceGoogle Scholar

  • Buschmann, A.H., O.A. Mora, P. Gómez, M. Böttger, S. Buitano, C. Retamales, P.A. Vergara and A. Gutierrez. 1994. Gracilaria chilensis outdoor tank culture in Chile: use of land-based salmon culture effluents. Aquacult. Eng. 13: 283–300.CrossrefGoogle Scholar

  • Craigie, J.S. 1990. Cell walls. In: (K.M. Cole and R.G. Sheath, eds.) Biology of the red algae. Cambridge University Press, Cambridge, MA. pp. 221–257.Google Scholar

  • Freile-Pelegrín, Y., D. Robledo and J.A. Azamar. 2006. Carrageenan of Eucheuma isiforme (Solieriaceae, Rhodophyta) from Yucatán, Mexico. I. Effect of extraction conditions. Bot. Mar. 49: 65–71.Google Scholar

  • Ganzon-Fortes, E.T., G.C. Trono Jr, R.D. Villanueva, J.B. Romero and M.N.E. Montaño. 2012. ‘Endong’, a rare variety of the farmed carrageenophyte Eucheuma denticulatum (Burman) Collins & Hervey from the Philippines. J. Appl. Phycol. 24: 1107–1111.CrossrefGoogle Scholar

  • Hansen, H.P. and F. Koroleff. 1999. Determination of nutrients. In: (K. Grashoff, K. Kremling and M. Ehrhardt, eds.) Methods of seawater analysis. Wiley-VCH, Weinheim, FR Germany. pp. 157–228.Google Scholar

  • Hayashi, L., E.J. de Paula and F. Chow. 2007. Growth rate and carrageenan analyses in four strains of Kappaphycus alvarezii (Rhodophyta, Gigartinales) farmed in the subtropical waters of São Paulo State, Brazil. J. Appl. Phycol. 19: 393–399.Web of ScienceCrossrefGoogle Scholar

  • Hemmingson, J.A. and R.H. Furneaux. 2000. Manipulation of galactan biosynthesis in Gracilaria chilensis Bird, McLachlan et Oliveira by light deprivation. Bot. Mar. 43: 285–289.Google Scholar

  • Hemmingson, J.A. and R.H. Furneaux. 2003. Variation of native agar gel strength in light deprived Gracilaria chilensis Bird, McLachlan et Oliveira. Bot. Mar. 46: 307–314.Google Scholar

  • Jackson, S.G. and E.L. McCandless. 1978. Simple, rapid, turbidometric determination of inorganic sulfate and/or protein. Anal. Biochem. 90: 802–808.PubMedCrossrefGoogle Scholar

  • Martinez, L.A. and A.H. Buschmann. 1996. Agar yield and quality of Gracilaria chilensisi (Gigartinales, Rhodophyta) in tank culture using fish effluents. Hydrobiologia 326/327: 341–345.Google Scholar

  • Mendoza, W.G., E.T. Ganzon-Fortes, R.D. Villanueva, J.B. Romero and M.N.E. Montaño. 2006. Tissue age as a factor affecting carrageenan quantity and quality in farmed Kappaphycus striatum (Schmitz) Doty ex Silva. Bot. Mar. 49: 57–64.Google Scholar

  • Montolalu, R.I., Y. Tashiro, S. Matsukawa and H. Ogawa. 2008. Effects of extraction parameters on gel properties of carrageenan from Kappaphycus alvarezii. J. Appl. Phycol. 20: 521–526.CrossrefGoogle Scholar

  • Neish, A.C. and P.F. Shacklock. 1971. Greenhouse experiments (1971) on the propagation of strain T4 of Irish moss. Technical Report No. 14 of the Atlantic Regional Laboratory, National Research Council of Canada, Halifax, N. NRCC No. 12253. pp. 25.Google Scholar

  • Qin, X., C. Ma, Z. Lou, A. Wang and H. Wang. 2013. Purification and characterization of d-gal-6-sulfurylase from Eucheuma striatum. Carbohydr. Polym. 96: 9–14.CrossrefGoogle Scholar

  • Rees, D.A. 1961. Enzymic synthesis of 3,6-anhydro-l-galactose within porphyran from l-galactose-6-sulphate units. Biochem. J. 81: 347–352.Google Scholar

  • Rodrigueza M.R.C. and M.N.E. Montaño. 2007. Bioremediation potential of three carrageenophytes cultivated in tanks with seawater from fish farms. J. Appl. Phycol. 19: 755–762.Web of ScienceCrossrefGoogle Scholar

  • Shukla, M.K., M. Kumar, K. Prasad, C.R.K. Reddy and B. Jha. 2011. Partial characterization of sulfohydrolase from Gracilaria dura and evaluation of its potential application in improvement of the agar quality. Carbohydr. Polym. 85: 157–163.Web of ScienceCrossrefGoogle Scholar

  • Strickland, J.D.H. and T.R. Parsons. 1972. A practical handbook of seawater analysis. Fisheries Research Board of Canada, Ottawa. pp. 310.Google Scholar

  • Viana, A.G., M.D. Noseda, M.E.R. Duarte and A.S. Cerezo. 2004. Alkali modification of carrageenans. Part V. The ι-ν hybrid carrageenan from Eucheuma denticulatum and its cyclization to ι-carrageenan. Carbohydr. Polym. 58: 455–460.CrossrefGoogle Scholar

  • Villanueva, R.D., L. Hilliou and I. Sousa-Pinto. 2009. Postharvest culture in the dark: an eco-friendly alternative to alkali treatment for enhancing the gel quality of κ/ι-hybrid carrageenan from Chondrus crispus (Gigartinales, Rhodophyta). Bioresource Technol. 100: 2633–2638.CrossrefWeb of ScienceGoogle Scholar

  • Villanueva, R.D., J.B. Romero, M.N.E. Montaño and P.O. de la Peña. 2011. Harvest optimization of four Kappaphycus species from the Philippines. Biomass Bioenergy 35: 1311–1316.CrossrefWeb of ScienceGoogle Scholar

  • Wong, K.F. and J.S. Craigie. 1978. Sulfohydrolase activity and carrageenan biosynthesis in Chondrus crispus (Rhodophyceae). Plant Physiol. 61: 663–666.PubMedCrossrefGoogle Scholar

  • Yaphe, W. and G.P. Arsenault. 1965. Improved resorcinol reagent for the determination of fructose and of 3,6-anhydrogalactose in polysaccharides. Anal. Biochem. 13: 143–148.Google Scholar

  • Yong, Y.S., W.T.L. Yong and A. Anton. 2013. Analysis of formulae for determination of seaweed growth rate. J. Appl. Phycol. 25: 1831–1834.CrossrefWeb of ScienceGoogle Scholar

About the article

Corresponding author: Ronald D. Villanueva, The Marine Science Institute, College of Science, University of the Philippines Diliman, 1101 Quezon City, Philippines, e-mail:

Received: 2013-12-22

Accepted: 2014-04-24

Published Online: 2014-05-15

Published in Print: 2014-06-01

Citation Information: Botanica Marina, Volume 57, Issue 3, Pages 217–223, ISSN (Online) 1437-4323, ISSN (Print) 0006-8055, DOI: https://doi.org/10.1515/bot-2013-0124.

Export Citation

©2014 by Walter de Gruyter Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Wei-Kang Lee, Yi-Yi Lim, Adam Thean-Chor Leow, Parameswari Namasivayam, Janna Ong Abdullah, and Chai-Ling Ho
Journal of Applied Phycology, 2017, Volume 29, Number 3, Page 1527

Comments (0)

Please log in or register to comment.
Log in