Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Botanica Marina

Editor-in-Chief: Dring, Matthew J.

6 Issues per year


IMPACT FACTOR 2017: 0.989
5-year IMPACT FACTOR: 1.204

CiteScore 2017: 1.00

SCImago Journal Rank (SJR) 2017: 0.297
Source Normalized Impact per Paper (SNIP) 2017: 0.454

Online
ISSN
1437-4323
See all formats and pricing
More options …
Volume 57, Issue 6

Issues

Extracts of macroalgae from the Brazilian coast inhibit bacterial quorum sensing

Daniela Batista
  • Corresponding author
  • Marine Biotechnology Division, Institute of Marine Studies Admiral Paulo Moreira, Rua Kioto n 253, Praia dos Anjos, CEP 28930-000, Arraial do Cabo, RJ, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ana Polycarpa Carvalho
  • Marine Biotechnology Division, Institute of Marine Studies Admiral Paulo Moreira, Rua Kioto n 253, Praia dos Anjos, CEP 28930-000, Arraial do Cabo, RJ, Brazil
  • Postgraduate of Oceans and Land Dynamics, Department of Geology, Federal Fluminense University, Niterói, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rafaela Costa
  • Marine Biotechnology Division, Institute of Marine Studies Admiral Paulo Moreira, Rua Kioto n 253, Praia dos Anjos, CEP 28930-000, Arraial do Cabo, RJ, Brazil
  • Postgraduate of Oceans and Land Dynamics, Department of Geology, Federal Fluminense University, Niterói, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ricardo Coutinho
  • Marine Biotechnology Division, Institute of Marine Studies Admiral Paulo Moreira, Rua Kioto n 253, Praia dos Anjos, CEP 28930-000, Arraial do Cabo, RJ, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sergey Dobretsov
  • Corresponding author
  • Marine Science and Fisheries Department, Agriculture and Marine Sciences College, Sultan Qaboos University, Al-Khoud 34, PO Box 123, Sultanate of Oman
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-11-28 | DOI: https://doi.org/10.1515/bot-2014-0031

Abstract

The ability of polar (1:1 water/methanol) and non-polar (dichloromethane) extracts of macroalgae from Arraial do Cabo, RJ, Brazil, to inhibit quorum sensing (QS) was investigated. Before extraction, half of the algae were treated with 30% ethanol to kill and remove surface-associated bacteria. Twenty of 22 polar extracts inhibited the QS of the acyl homoserine lactone (AHL) producer and reporter Chromobacterium violaceum CV017 with minimal inhibitory concentrations (MIC) ranging from 0.28 μg ml-1 (Ulva fasciata) to 189 μg ml-1 (Codium sp.). The MIC of non-polar extracts varied from 69 μg ml-1 (Sargassum furcatum) to 2730 μg ml-1 (Peyssonnelia capensis). Usually, extracts from algae with associated bacteria had a higher bioactivity than ones without them. Among 11 algal species tested, 50% of extracts with associated bacteria were toxic to C. violaceum CV026. None of the extracts contained AHLs, which was shown using reporters C. violaceum CV026 and Agrobacterium tumefaciens NTL4 (pZLR4). Polar (11%) and non-polar extracts (2%) inhibited QS-dependent attachment of Pseudomonas aeruginosa PA01 at tissue-level concentrations. Our data suggest that secondary metabolites from algae and their associated microbiota are an important source of QS inhibitors, which potentially can be used in future biotechnological applications.

Keywords: bacteria; biofouling; inhibition; macroalgae; quorum sensing

References

  • Abarzua, S. and S. Jakubowski. 1995. Biotechnological investigation for the prevention of biofouling. I. Biological and biochemical principles for the prevention of biofouling. Mar. Ecol. Prog. Ser. 123: 301–312.CrossrefGoogle Scholar

  • Bhadury, P. and P.C. Wright. 2004. Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta 219: 561–578.Google Scholar

  • Bigatti, G., M.A. Primosti, M. Clédon, A. Averjub, N. Theobald, W. Gerwinsk, W. Arntz, E. Moriconi and P.E. Penchaszadeh. 2009. Biomonitoring of TBT contamination and imposex incidence along 4700 km of Argentinean shoreline (SW Atlantic: from 38S to 54S). Mar. Pol. Bull. 58: 695–701.Web of ScienceCrossrefGoogle Scholar

  • Borchardt, S.A., E.J. Allian, J.J. Michels, G.W. Stearns, R.F. Kelly and W.F. McCoy. 2001. Reaction of acylated homoserine lactone bacterial signaling molecules with oxidized halogen antimicrobials. Appl. Environ. Microbiol. 67: 3174–3179.CrossrefPubMedGoogle Scholar

  • Bosgelmez-Tinaz, G., S. Ulusoy, A. Ugur and O. Ceylan. 2007. Inhibition of quorum sensing-regulated behaviors by Scorzonera sandrasica. Curr. Microbiol. 55: 114–118.Web of ScienceCrossrefGoogle Scholar

  • Burgess, J.G., E.M. Jordan, M. Bregu, A. Mearns-Spragg and K.G. Boyd. 1999. Microbial antagonism: a neglected avenue of natural products research. J. Biotechnol. 70: 27–32.Google Scholar

  • Cha, C., P. Gao, Y.C. Chen, P.D. Shaw and S.K. Farrand. 1998. Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol. Plant Microbe Interact. 11: 1119–1129.Google Scholar

  • Chambers, L.D., K.R. Stokes, F.C. Walsh and R.J.K. Wood. 2006. Modern approaches to marine antifouling coatings. Surf. Coat. Tech. 201: 3642–3652.Google Scholar

  • Chernin, L.S., M.K. Winson, J.M. Thompson, S. Haran, B.W. Bycroft and I. Chet. 1998. Chitinolytic activity in Chromobacterium violaceum: substrate analysis and regulation by quorum sensing. J. Bacteriol. 180: 4435–4441.Google Scholar

  • Davies, D.G., M.R. Parsek, J.P. Pearson, B.H. Iglewski, J.W. Costerton and E.P. Greenberg. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280: 295–298.Google Scholar

  • de Nys, R. and P.D. Steinberg. 2002. Linking marine biology and biotechnology. Curr. Opin. Biotechnol. 13: 244–248.CrossrefGoogle Scholar

  • Dobretsov, S. and P.Y. Qian. 2002. Effect of bacteria associated with the green alga Ulva reticulata on marine micro- and macrofouling. Biofouling 18: 217–228.CrossrefGoogle Scholar

  • Dobretsov, S., H.U. Dahms and P.Y. Qian. 2006. Inhibition of biofouling by marine microorganisms and their metabolites. Biofouling 22: 43–54.CrossrefPubMedGoogle Scholar

  • Dobretsov, S., M. Teplitski and V.J. Paul. 2009. Mini-review: quorum sensing in the marine environment and its relationship to biofouling. Biofouling 25: 413–427.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Dobretsov, S., M. Teplitski, A. Alagely, S.P. Gunasekera and V.J. Paul. 2010. Malyngolide from the cyanobacterium Lyngbya majuscula interferes with quorum sensing circuitrye. Environ. Microbiol. Rep. 2: 739–744.PubMedCrossrefGoogle Scholar

  • Dobretsov, S., M. Teplitski, M. Bayer, S. Gunasekera, P. Proksch and V. Paul. 2011. Inhibition of marine biofouling by bacterial quorum sensing inhibitors. Biofouling 27: 893–905.CrossrefWeb of SciencePubMedGoogle Scholar

  • Dobretsov, S., R.M. Abed and M. Teplitski. 2013. Mini-review: inhibition of biofouling by marine microorganisms. Biofouling 29: 423–441.Web of ScienceCrossrefPubMedGoogle Scholar

  • Givskov, M., R. de Nys, M. Manefield, L. Gram, R. Maximilien and L. Eberl. 1996. Eukaryotic interference with homoserine lactone-mediated prokaryotic signaling. J. Bacteriol. 178: 6618–6622.Google Scholar

  • Goecke, F., A. Labes, J. Wiese and J.F. Imhoff. 2010. Chemical interactions between marine macroalgae and bacteria. Mar. Ecol. Prog. Ser. 409: 267–300.Web of ScienceGoogle Scholar

  • Gollasch, S. 2002. The importance of ship hull fouling as a vector of species introductions into the North Sea. Biofouling 18: 105–121.CrossrefGoogle Scholar

  • Hellio, C., D.L. Broise, L. Dufossé, Y.L. Gal and N. Bourgougnon. 2001. Inhibition of marine bacteria by extracts of macroalgae: potential use for environmentally friendly antifouling paints. Mar. Environ. Res. 52: 231–247.CrossrefPubMedGoogle Scholar

  • Holm, E.R. 2012. Barnacles and biofouling. Integr. Comp. Biol. 52: 348–355.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Jha, B., K. Kavita, J. Westphal, A. Hartmann and P. Schmitt-Kopplin. 2013. Quorum sensing inhibition by Asparagopsis taxiformis, a marine macro alga: separation of the compound that interrupts bacterial communication. Mar. Drugs 11: 253–265.CrossrefWeb of SciencePubMedGoogle Scholar

  • Joint, I., K. Tait and G. Wheeler. 2007. Cross-kingdom signalling: exploitation of bacterial quorum sensing molecules by the green seaweed Ulva. Philos. Trans. R. Soc. Lond. B. 362: 1223–1233.Google Scholar

  • Kanagasabhapathy, M., G. Yamazaki, A. Ishida, H. Sasaki and S. Nagata. 2009. Presence of quorum-sensing inhibitor-like compounds from bacteria isolated from the brown alga Colpomenia sinuosa. Lett. Appl. Microbiol. 49: 573–579.CrossrefWeb of SciencePubMedGoogle Scholar

  • Kientz, B., M. Thabard, S. M. Cragg, J. Pope and C. Hellio. 2011. A new method for removing microflora from macroalgal surfaces: an important step for natural product discovery. Bot. Mar. 54: 2655–2661.Web of ScienceGoogle Scholar

  • Kievit, T.R.D., R. Gillis, S. Marx, C. Brown and B.H. Iglewski. 2001. Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl. Environ. Microbiol. 67: 1865–1873.CrossrefGoogle Scholar

  • Kim, J.S., Y.H. Kim, Y.W. Seo and S. Park. 2007. Quorum sensing inhibitors from the red alga, Ahnfeltiopsis flabelliformis. Biotechnol. Bioprocess. Eng. 12: 308–311.Web of ScienceCrossrefGoogle Scholar

  • Lejars, M., A. Margaillan and C. Bressy. 2012. Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings. Chem. Rev. 112: 4347–4390.Web of ScienceCrossrefPubMedGoogle Scholar

  • Manefield, M., R. Nys, N. Kumar, R. Read, M. Givskov and P. Steinberg. 1999. Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 145: 283–291.Google Scholar

  • Manefield, M., T.B. Rasmussen, M. Henzter, J.B. Andersen, P. Steinberg, S. Kjelleberg and M. Givskov. 2002. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology 148: 1119–1127.Google Scholar

  • Penesyan, A., Z. Marshall-Jones, C. Holmstrom, S. Kjelleberg and S. Egan. 2009. Antimicrobial activity observed among cultured epiphytic bacteria reflects their potential as source of new drugs. Microbiol. Ecol. 69: 113–124.Web of ScienceGoogle Scholar

  • Qian, P.Y., Y. Xu and N. Fusetani. 2010. Natural products as antifouling compounds: recent progress and future perspectives. Biofouling 26: 223–234.Web of SciencePubMedCrossrefGoogle Scholar

  • Rittschof, D. 2001. Natural product antifoulants and coatings development. In: (J.B. McClintock and B.J. Baker, eds) Marine chemical ecology. CRC Press, Boca Raton, FL. pp. 543–566.Google Scholar

  • Robson, N.D., A.R.J. Cox, S.J. McGowan, B.W. Bycroft and G.P. Salmond. 1997. Bacterial N-acylhomoserine lactone-dependent signaling and its potential bio-technological applications. Trends Biotechnol. 15: 458–46420.CrossrefGoogle Scholar

  • Salmond, G.P.C., B.W. Bycroft, G.S.A.B. Stewart and P. Williams. 1995. The bacterial ‘enigma’: cracking the code of cell-cell communication. Mol. Microbiol. 16: 615–624.PubMedCrossrefGoogle Scholar

  • Scardino, A.J. and R. de Nys. 2011. Mini review: biomimetic models and bioinspired surfaces for fouling control. Biofouling 27: 73–86.Web of ScienceCrossrefGoogle Scholar

  • Schultz, M.P., J.A. Bendick, E.R. Holm and W.M. Hertel. 2011. Economic impact of biofouling on a naval surface ship. Biofouling 27: 87–98.Web of ScienceCrossrefPubMedGoogle Scholar

  • Skindersoe, M.E., P. Ettinger-Epstein, T.B. Rasmussen, T. Bjarnsholt, R. de Nys and M. Givskov. 2008. Quorum sensing antagonism from marine organisms. Mar. Biotechnol. 10: 56–63.CrossrefPubMedGoogle Scholar

  • Swift, S., J.A. Downie, N.A. Whitehead, A.M.L. Barnard, G.P.C. Salmond and P. Williams. 2001. Quorum sensing as a population-density-dependent determinant of bacterial physiology. Adv. Microb. Physiol. 45: 199–270.PubMedCrossrefGoogle Scholar

  • Tait, K., I. Joint, M. Daykin, D.L. Milton, P. Williams and M. Cámara. 2005. Disruption of quorum sensing in seawater abolishes attraction of zoospores of the green alga Ulva to bacterial biofilms. Environ. Microbiol. 7: 229–240.PubMedCrossrefGoogle Scholar

  • Thabard, M., G.I. Daoud, B. Véron, R.L. Fletcher and C. Hellio. 2009. Screening of biological activities of extracts of Ralfsia verrucosa, Petalonia fasciaand Scytosiphon lomentaria (Phaeophyceae, Scytosiphonales) for potential antifouling application. Electronic J. Nat. Subs. 4:1–10.Google Scholar

  • Waters, C.M. and B.L. Bassler. 2005. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell. Dev. Biol. 21: 319–346.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Xiong, Y. and Y. Liu. 2010. Biological control of microbial attachment: a promising alternative for mitigating membrane biofouling. Appl. Microbiol. Biotechnol. 86: 825–837.Web of ScienceCrossrefPubMedGoogle Scholar

  • Yan, L., K.G. Boyd and J.G. Burgess. 2009. Surface attachment induced production of antimicrobial compounds by marine epiphytic bacteria using modified roller bottle cultivation. Mar. Biotechnol. 4: 356–366.Google Scholar

  • Yebra, D.M., S. Kiil and K. Dam-Johansen. 2004. Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog. Org. Coat. 50: 75–104.CrossrefGoogle Scholar

About the article

Corresponding authors: Daniela Batista, Marine Biotechnology Division, Institute of Marine Studies Admiral Paulo Moreira, Rua Kioto nō 253, Praia dos Anjos, CEP 28930-000, Arraial do Cabo, RJ, Brazil, e-mail: ; and Sergey Dobretsov, Marine Science and Fisheries Department, Agriculture and Marine Sciences College, Sultan Qaboos University, Al-Khoud 34, PO Box 123, Sultanate of Oman, e-mail:


Received: 2014-05-27

Accepted: 2014-10-31

Published Online: 2014-11-28

Published in Print: 2014-12-01


Citation Information: Botanica Marina, Volume 57, Issue 6, Pages 441–447, ISSN (Online) 1437-4323, ISSN (Print) 0006-8055, DOI: https://doi.org/10.1515/bot-2014-0031.

Export Citation

©2014 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Daniela Batista, Rafaela Costa, Ana Polycarpa Carvalho, William Romão Batista, Cintia P.J. Rua, Louisi de Oliveira, Luciana Leomil, Adriana M. Fróes, Fabiano L. Thompson, Ricardo Coutinho, and Sergey Dobretsov
Marine Environmental Research, 2018
[2]
Nicole Schwartz, Sven Rohde, Sergey Dobretsov, Shimabukuro Hiromori, Peter J. Schupp, and Vijai Gupta
PLOS ONE, 2017, Volume 12, Number 12, Page e0189761
[3]
Mahasweta Saha, Franz Goecke, and Punyasloke Bhadury
Journal of Applied Phycology, 2017
[4]
Hans Dahms and Sergey Dobretsov
Marine Drugs, 2017, Volume 15, Number 9, Page 265
[5]
Lianguo Chen and Pei-Yuan Qian
Marine Drugs, 2017, Volume 15, Number 9, Page 264
[6]
Nicole Schwartz, Sergey Dobretsov, Sven Rohde, and Peter J. Schupp
European Journal of Phycology, 2017, Volume 52, Number 1, Page 116
[7]
A. P. Carvalho, D. Batista, S. Dobretsov, and R. Coutinho
Journal of Applied Phycology, 2017, Volume 29, Number 2, Page 789

Comments (0)

Please log in or register to comment.
Log in