Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Botanica Marina

Editor-in-Chief: Dring, Matthew J.


IMPACT FACTOR 2017: 0.989
5-year IMPACT FACTOR: 1.204

CiteScore 2017: 1.00

SCImago Journal Rank (SJR) 2017: 0.297
Source Normalized Impact per Paper (SNIP) 2017: 0.454

Online
ISSN
1437-4323
See all formats and pricing
More options …
Volume 59, Issue 2-3

Issues

Biomass and productivity of seagrasses in Africa

Michael N. GithaigaORCID iD: http://orcid.org/0000-0001-7890-1819
  • Corresponding author
  • Marine Ecology and Environmental Programme, Kenya Marine and Fisheries Research Institute, P.O. Box 81651, Mombasa, Mombasa City, Kenya
  • School of Life, Sport and Social Sciences, Edinburgh Napier University, EH11 4BN, Edinburgh, UK
  • orcid.org/0000-0001-7890-1819
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Linda Gilpin
  • School of Life, Sport and Social Sciences, Edinburgh Napier University, EH11 4BN, Edinburgh, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ James G. Kairo
  • Marine Ecology and Environmental Programme, Kenya Marine and Fisheries Research Institute, P.O. Box 81651, Mombasa, Mombasa City, Kenya
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mark Huxham
  • School of Life, Sport and Social Sciences, Edinburgh Napier University, EH11 4BN, Edinburgh, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-05-25 | DOI: https://doi.org/10.1515/bot-2015-0075

Abstract

There is growing interest in carbon stocks and flows in seagrass ecosystems, but recent global reviews suggest a paucity of studies from Africa. This paper reviews work on seagrass productivity, biomass and sediment carbon in Africa. Most work was conducted in East Africa with a major geographical gap in West Africa. The mean above-ground, below-ground and total biomasses from all studies were 174.4, 474.6 and 514 g DW m-2, respectively with a global range of 461–738 g DW m-2. Mean annual production rate was 913 g DW m-2 year-1 (global range 816–1012 g DW m-2 year-1). No studies were found giving sediment organic carbon, demonstrating a major gap in seagrass blue carbon work. Given the small numbers of relevant papers and the large geographical areas left undescribed in Africa, any conclusions remain tentative and much remains to be done on seagrass studies in Africa.

Keywords: Africa; blue carbon; productivity; seagrasses

References

  • Adams, J.B. and M.M.B. Talbot. 1992. The influence of river impoundment on the estuarine seagrass Zostera capensis Setchell. Bot. Mar. 35: 69–76.Google Scholar

  • Aleem, A.A. 1984. Distribution and ecology of seagrass communities. Deep Sea Res. 31: 919–933.Google Scholar

  • Bandeira, S.O. 1997. Dynamics, biomass and total rhizome length of the seagrass Thalassodendron ciliatum at Inhaca Island, Mozambique. Plant Ecol. 130: 133–141.Google Scholar

  • Bandeira, S.O. 2000. High production rates of the seagrass Thalassodendron ciliatum from the rocky and sandy habitats in Southern Mozambique: a comparative study In: (Diversity and Ecology of Seagrasses in Mozambique): emphasis on Thalassodendron ciliatum. structure, dynamics, nutrients and genetic variability. Ph.D. thesis. Göteborg. University, Sweden. pp. 18.Google Scholar

  • Bandeira, S.O. 2002. Leaf production rates of Thalassodendron ciliatum from rocky and sandy habitats. Aquat. Bot. 72: 13–24.Google Scholar

  • Bououarour, O., R. El Kamcha, L. Boutahar, A. Tnoumi, Z. Bendahhou, A. Benhoussa and B. Hocein. 2015. In:(Mediterranean Seagrass Workshop). Spatial patterns of the Zostera noltii meadows across the Atlantic coast of Morocco: is there a latitudinal gradient?-Sardinia, Italy. pp. 81.Google Scholar

  • Boutahar, L., Y.S. Ramzi, O. Atef, R. El Kamcha, A. Benhoussa, E. Ostale and H. Bazairi. 2015. In: (Mediterranean Seagrass Workshop). First data on biomass and abundance of two eelgrass (Zostera marina) meadows south to the strait of Gilbraltar Jbel Moussa, Morocco. Sardinia, Italy. pp. 109.Google Scholar

  • Campbell, J.E., E.A. Lacey, R.A. Decker, S. Crooks and J.W. Fourqurean. 2014. Carbon storage in Seagrass Beds of Abu Dhabi, United Arab Emirates. Estuar. Coast. 38: 242–251.Google Scholar

  • Christie, N.D. 1981. Primary production in the Langebaan Lagoon. In: (J.H. Day. ed.). Estuarine ecology with particular reference to Southern Africa. Cape Town, Balkema. pp. 101–115.Google Scholar

  • Daby, D. 2003. Effects of seagrass bed removal for tourism purposes in a Mauritian Bay. Environ. Pollut. 125: 313–324.Google Scholar

  • de Boer, W.F. 2000. Biomass dynamics of seagrasses and the role of mangrove and seagrass vegetation as different nutrient sources for an intertidal ecosystem. Aquat. Bot. 66: 225–239.Google Scholar

  • Duarte, C.M. M.A. Hemminga, N. Marba. 1996. Growth and population dynamics of Thalassodendron ciliatum in a Kenyan back-reef lagoon. Aquat. Bot. 55: 1–11.Google Scholar

  • Duarte, C.M. and J. Cebrián. 1996. The fate of marine autotrophic production. Limnol. Oceanogr. 41: 1758–1766.Google Scholar

  • Duarte, C. and C. Chiscano. 1999. Seagrass biomass and production: a reassessment. Aquat. Bot. 65: 159–174.Google Scholar

  • Duarte, C., M.M. Merino, N.S.R. Agawin, J. Uri, M.D. Fortes, M.E. Gallegos, N.Marba and M.A Hemminga. 1998. Root production and below-ground seagrass biomass. Mar. Ecol. Prog. Ser. 171: 97–108.Google Scholar

  • Eklöf, J.S., M. de la Torre Castro, L. Adelsköld, N.S. Jiddawi and N. Kautsky. 2005. Differences in macrofaunal and seagrass assemblages in seagrass beds with and without seaweed farms. Estuar. Coast. Shelf S. 63: 385–396.Google Scholar

  • Fourqurean, J.W., C.M. Duarte, H. Kennedy, N. Marbà, M. Holmer, M.A. Mateo and D. Krause-jensen. 2012. Seagrass ecosystems as a globally significant carbon store. Nat. Geo. 5: 1–5.Google Scholar

  • Gab-Alla, A. 2001. Ecological Status of the Seagrass Community in Sharm El-Moyia Bay (Gulf of Aqaba, Red Sea) after Oil Pollution in 1999. Mar. Sci. 12: 231–239.Google Scholar

  • Grindley, J.R. 1976. Report on ecology of Knysna Estuary and proposed Braamekraal Marina. (Internal Report). School of Environmental Studies, University of Cape Town, South Africa. pp. 133.Google Scholar

  • Gullström, M., B. Lundén, M. Bodin, J. Kangwe, M.C. Öhman, M.S.P. Mtolera and M. Björk. 2006. Assessment of changes in the seagrass-dominated submerged vegetation of tropical Chwaka Bay (Zanzibar) using satellite remote sensing. Estuar. Coast. Shelf S. 67: 399–408.Google Scholar

  • Gullström, M., M. Bodin, P.G. Nilsson and M.C. Öhman. 2008. Seagrass structural complexity and landscape configuration as determinants of tropical fish assemblage composition. Mar. Ecol. Prog. Ser. 363: 241–255.Google Scholar

  • Gwada, P. 2004. An assessment of seagrass survival and functioning in response to manipulations in sediment redox at Nyali Lagoon, Mombasa, Kenya. WIOMSA report. MARG-1. GRANTEE 2001/2002.Google Scholar

  • Hanekom, N. and D. Baird. 1988. Distribution and variations in seasonal biomass of eelgrass. Zostera capensis in the Kromme estuary, St Francis Bay South Africa. S. Afr. J. Mar. Sci. 7: 51–59.Google Scholar

  • Hemminga, M.A., P. Gwada, F.J. Slim, P. de Koeyer and J. Kazungu. 1995. Leaf production and nutrient contents of the seagrass Thalassodendron ciliatum in the proximity of a mangrove forest (Gazi Bay, Kenya). Aquat. Bot. 50: 159–170.Google Scholar

  • Howard, J., S. Hoyt, K. Isensee, M. Telszewski and E. Pidgeon (eds.). 2014. Coastal Blue Carbon Methods for assessing carbon stocks and emmission factors in mangroves, tidal salt marshes and seagrasses. Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature, Arlington, Virginia, USA.Google Scholar

  • Imen, B.S. and S Abdessalem. 2015. In: (Mediterranean Seagrass Workshop). Distribution, biomass and phenology of Zostera noltii meadows in the Northern lagoon of Tunis in the summer of 2014. Sardinia, Italy. pp. 80.Google Scholar

  • Kamermans, P., M.A. Hemminga, J.F.Tack, M.A. Mateo, N. Marbà, M. Mtolera and Daele, T. Van. 2002. Groundwater effects on diversity and abundance of lagoonal seagrasses in Kenya and on Zanzibar Island (East Africa). Mar. Ecol. Prog. Ser. 231: 75–83.Google Scholar

  • Larsson, S. 2009. The Production of the Seagrass Thalassia hemprichii in relation to epiphytic biomass. M.Sc. thesis (unpublished). Göteborg. University, Sweden. pp. 12.Google Scholar

  • Lugendo, B.R., Y. Mgaya and A. Semesi. 2001. The seagrass and associated macroalgae at selected beaches along Dar es Salaam coast. In: (M.D. Richmond and J. Francis, eds.) Marine science development in Tanzania and East Africa. WIOMSA Books Series. pp. 359–374.

  • Lyimo, T.J., E.F. Mvungi, C. Lugomela and M. Björk. 2006. Seagrass biomass and productivity in Seaweed and Non-Seaweed Farming areas in the East Coast of Zanzibar. WIO J. Mar. Sci., 5: 141–152.Google Scholar

  • Lyimo, T., E. Mvungi and Y. Mgaya. 2008. Abundance and diversity of seagrass and macrofauna in the intertidal areas with and without seaweed farming activities in the east coast of Zanzibar. Tanz. J. Sci. 34: 41–52.Google Scholar

  • Martins, A. and S. Bandeira. 2001. Biomass distribution and leaf nutrient concentrations and resorption of Thalassia hemprichii at Inhaca Island, Mozambique. Afr. J. Bot. 67: 439–442.Google Scholar

  • Mateo M.A., J. Cebrian, K. Dunton and T. Mutchler. 2006. Carbon flux in seagrass ecosystem. In: (A. Larkum, R. Orth and C. Duarte. eds). Seagrass biology, ecology and conservation. Springer-Verlag, Netherlands. pp. 159–192.Google Scholar

  • Mostafa, H.M. 1996. Preliminary observations of the seagrass Cymodocea nodosa (Ucria) Ascherson in the Mediterranean waters of Alexandria, Egypt. Bull. Natl Inst. Ocea. Fish. 22: 19–28.Google Scholar

  • Mvungi, E.F. 2011. Seagrasses and eutrophication Interactions between seagrass photosynthesis. Ph.D thesis (unpublished). Stockholm University, Sweden. pp. 44.Google Scholar

  • Nellemann, C., E. Corcoran, C.M. Duarte, L. Valdes, C. De Young, L. Fonseca and G. Grimsditch. (eds). 2009. Blue carbon. A rapid response assessment. GRID-Arendal. United Nations Environmental Programme. ISBN: 978-82-7701-060-1.Google Scholar

  • Ochieng, C.A. 1995. Productivity of seagrasses with respect to intersystem fluxes Gazi Bay (Kenya). In: Interlinkages between Eastern African Coastal Ecosystems. Contract No. T53-CT92-0114. Final report. pp. 82–86.Google Scholar

  • Ochieng, C.A. and P.L. Erftemeijer. 1999. Accumulation of seagrass beach cast along the Kenyan coast: a quantitative assessment. Aquat. Bot. 65: 221–238.Google Scholar

  • Ochieng, C.A. and P.L. Erftemeijer. 2003. Seagrasses of Tanzania and Kenya. In: (E. Green and F. Short, eds.). World atlas of seagrasses. World Conservation Monitoring Centre. University of California Press, USA, Berkely. pp. 93–100.Google Scholar

  • Paula, J., P.F. Ecosta, A. Martins and D. Gove. 2001. Patterns of abundance of seagrasses and associated infaunal communities at Inhaca Island, Mozambique. Estuar. Coast. Shelf S. 53: 307–318.Google Scholar

  • Pergent, G., A. Djellouli, A.A. Hamza, K.S. Ettayeb, A.A. El Mansouri, F.M. Talha and F Platini. 2002. Characterization of the benthic vegetation in the Farwà Lagoon (Libya). J. Coast. Cons. 8: 119–126.Google Scholar

  • Semroud, R., S. Mezegrane and L. Soltane. 1990. Etude lépidochronologique de Posidonia oceanica dans la régiond’Alger (Algérie): donnéspréliminaires. Rapp. P.V. Réun. Comm. Int. Explor. Sci. Médit. 31: 10.Google Scholar

  • Sghaier, Y.R. 2012. Seasonal variation of Cymodocea nodosa in the Ghar El Melh lagoon (Tunisia), with reference to insolation, temperature and salinity effects. Bull. Inst. Natl. Sci. Tech. Mede. Salammbõ. 39: 117–125.Google Scholar

  • Sghaier, Y.R., R. Zakhama-Sraieb and F. Charfi-Cheikhrouh. 2011. Primary production and biomass in a Cymodocea nodosa meadow in the Ghar El Melh lagoon, Tunisia. Bot. Mar. 54: 411–418.Google Scholar

  • Sghaier, Y.R., R. Zakhama-Sraieb and F. Charfi-Cheikhrouha. 2013. Patterns of shallow seagrass (Posidonia oceanica) growth and flowering along the Tunisian coast. Aquat. Bot. 104: 185–192.Google Scholar

  • Short, F., T. Carruthers, W. Dennison and M. Waycott. 2007. Global seagrass distribution and diversity: A bioregional model. J. Exp. Mar. Biol. Ecol. 350: 3–20.Google Scholar

  • Talbot, M.M.B. and G.C. Bate. 1987. The distribution and biomass of the seagrass Zostera capensis in a warm-temperate estuary. Bot. Mar. 30: 91–99.Google Scholar

  • Uku, J.N. and M. Björk. 2005. Productivity aspects of three tropical seagrass species in areas of different nutrient levels in Kenya. Estuar. Coast. Shelf S. 63: 407–420.Google Scholar

  • Uku, J.N., E.E. Martens and K.M. Mavuti. 1996. An ecological assessment of Littoral Seagrass Communities in Diani and Galu Coastal Beaches, Kenya. M.Sc thesis (unpublished). University of Nairobi. pp. 185.Google Scholar

  • van der Laan, B.B.P.A. and W.J. Wolff. 2006. Circular pools in the seagrass beds of the Banc d’Arguin, Mauritania, and their possible origin. Aquat. Bot. 84: 93–100.Google Scholar

  • Van Lent, F., P.H. Nienhuis and J.M. Verschuure. 1991. Production and biomass of the seagrasses Zostera-noltii Hornem and Cymodocea nodosa (Ucria) Aschers at the Banc-Darguin (Mauritania, N.W Africa). A preliminary approach. Aquat. Bot. 41: 353–367.Google Scholar

  • Vermaat, J.E., J.J. Beijer, R. Gijlstra, M.J.M. Hootsmans, C.J.M. Philippart., N.W. van den Brink and W. van Vierssen. 1993. Leaf dynamics and standing stocks of intertidal Zostera noltii Hornem. and Cymodocea nodosa (Ucria) Ascherson on the Banc d’Arguin (Mauritania). Hydrobiologia. 258: 59–72.Google Scholar

About the article

Michael N. Githaiga

Michael N. Githaiga is a final year PhD student at Edinburgh Napier University. His PhD thesis is titled “Role of seagrass as carbon sinks, Gazi Bay, Kenya”. He graduated with a Bachelor of Education Science degree from Kenyatta University and later on a Master of Science degree (Plant Ecology) from the same University. His MSc research was titled “Structure and biomass accumulation of natural mangroves Forest of Gazi Bay, Kenya”. He has a great interest in marine ecology with a strong focus on carbon accounting in marine ecosystems.

Linda Gilpin

Linda Gilpin is a lecturer in Aquatic Biology at Edinburgh Napier University. She was awarded a PhD in Biogeochemistry by Queen’s University Belfast, focusing on nitrogen metabolism and went on to study primary productivity and nutrient dynamics in a range of oceanic and coastal systems including the response of the microbial community to changes associated with eutrophication. More recent collaborations have involved the assessment of change in plankton communities.

James G. Kairo

James G. Kairo earned his PhD in Marine Sciences from the Free University of Brussels (VUB) in Belgium. He currently works as Principal Scientist with the Kenya Marine and Fisheries Research Institute, and is a member of both the International Blue Carbon Scientific Working Group and the newly launched Science for Blue Carbon (SBC) working group. Kairo has vast experiences in the conservation, rehabilitation and sustainable utilization of mangrove resources; which has earned him local and international awards. In 2010, Dr Kairo was awarded the Kenya’s Presidential Award of the Moran of the Order of the Burning Spear (MBS) for his exemplary work on marine resources management. He was the lead author in the development of the 2013 supplement of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.

Mark Huxham

Mark Huxham is Professor of Teaching and Research in Environmental Biology at Edinburgh Napier University. Mark’s main research interests are in the ecology and management of coastal ecosystems particularly mangroves and seagrasses. He is Director of the Association for Coastal Ecosystem Services, a charity that helps to administer the world’s first community-based mangrove conservation project funded by the sale of carbon credits.


Received: 2015-09-05

Accepted: 2016-04-26

Published Online: 2016-05-25

Published in Print: 2016-06-01


Citation Information: Botanica Marina, Volume 59, Issue 2-3, Pages 173–186, ISSN (Online) 1437-4323, ISSN (Print) 0006-8055, DOI: https://doi.org/10.1515/bot-2015-0075.

Export Citation

©2016 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
William D. Harcourt, Robert A. Briers, and Mark Huxham
Biology Letters, 2018, Volume 14, Number 11, Page 20180227
[2]
Katherine R. O'Brien, Michelle Waycott, Paul Maxwell, Gary A. Kendrick, James W. Udy, Angus J.P. Ferguson, Kieryn Kilminster, Peter Scanes, Len J. McKenzie, Kathryn McMahon, Matthew P. Adams, Jimena Samper-Villarreal, Catherine Collier, Mitchell Lyons, Peter J. Mumby, Lynda Radke, Marjolijn J.A. Christianen, and William C. Dennison
Marine Pollution Bulletin, 2017
[3]
Geraldina Signa, Antonio Mazzola, James Kairo, and Salvatrice Vizzini
Biogeosciences, 2017, Volume 14, Number 3, Page 617

Comments (0)

Please log in or register to comment.
Log in