Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Botanica Marina

Editor-in-Chief: Dring, Matthew J.

6 Issues per year

IMPACT FACTOR 2016: 1.239
5-year IMPACT FACTOR: 1.373

CiteScore 2016: 1.28

SCImago Journal Rank (SJR) 2016: 0.456
Source Normalized Impact per Paper (SNIP) 2016: 0.841

See all formats and pricing
More options …
Volume 59, Issue 6


Fate of two invasive or potentially invasive alien seaweeds in a central Mediterranean transitional water system: failure and success

Ester Cecere / Giorgio Alabiso / Roberto Carlucci / Antonella Petrocelli
  • Corresponding author
  • Institute for the Marine Coastal Environment (IAMC) – CNR, via Roma 3, 74123 Taranto, Italy, Fax: +39 0994542215
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marc Verlaque
  • Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, GIS Posidonie, 13288 Marseille, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-11-12 | DOI: https://doi.org/10.1515/bot-2016-0053


Over the past 15 years, populations of two invasive or potentially invasive alien seaweeds have been studied by means of both quantitative and qualitative methods in the Mar Piccolo basin in Taranto (Southern Italy, Mediterranean Sea). The dynamics of the cold-temperate brown seaweed Undaria pinnatifida (Alariaceae, Laminariales) showed a boom-and-bust path, ending in apparent local extinction. In contrast, the tropical red seaweed Hypnea cornuta (Cystocloniaceae, Gigartinales) has shown a steadily invasive path since its introduction. The respective failure and success of these marine alien species were analysed in relation to their biological and ecological traits and the environmental characteristics of the Mar Piccolo in comparison with other Mediterranean coastal lagoons. The study confirms that temperature and salinity monitoring in the recipient region could provide a first estimation of the invasive potential of an alien species soon after its introduction.

Keywords: alien species; Hypnea cornuta; Mediterranean Sea; transitional water systems (TWS); Undaria pinnatifida


  • Akiyama, K. and M. Kurogi. 1982. Cultivation of Undaria pinnatifida (Harvey) Suringar. The decrease in crops from natural plants following crop increase from cultivation. Bull. Tohoku Reg. Fish. Res. Lab. 44: 93–100.Google Scholar

  • Anonymous. 1980. Activité de l’Institut des Pêches en 1979. Principales actions en matière de cultures marines. Sci. Pêch., Bull. Inst. Pêch. Marit. 306: 1–39.Google Scholar

  • Báez, J.C., J. Olivero, C. Peteiro, F. Ferry-Yáñez, C. Garcia-Soto and R. Real. 2010. Macro-environmental modelling of the current distribution of Undaria pinnatifida (Laminariales, Ochrophyta) in northern Iberia. Biol. Invasions 12: 2131–2139.Google Scholar

  • Bardach, J.E., J.H. Ryther and W.O. McLarney. 1982. Aquaculture. The farming and husbandry of freshwater and marine organisms. John Wiley & Sons Inc., London. pp. 868.Google Scholar

  • Bjærke, M.R. and J. Rueness. 2004. Effects of temperature and salinity on growth, reproduction and survival in the introduced red alga Heterosiphonia japonica (Ceramiales, Rhodophyta). Bot. Mar. 47: 373–380.Google Scholar

  • Boudouresque, C.F. and M. Verlaque. 2010. Is global warming involved in the success of seaweed introductions in the Mediterranean Sea? In: (A. Israel, R. Einav and J. Seckbach, eds) Seaweeds and their Role in Globally Changing Environments. Springer, Dordrecht. pp. 33–50.Google Scholar

  • Boudouresque, C. F. and M. Verlaque. 2012. An overview of species introduction and invasion processes in marine and coastal lagoon habitats. Cah. Biol. Mar. 53: 309–317.Google Scholar

  • Boudouresque, C.F., F. Gerbal and M. Knoepffler-Peguy. 1985. L’algue japonaise Undaria pinnatifida (Phaeophyceae, Laminariales) en Méditerranée. Phycologia 24: 364–366.Google Scholar

  • Boudouresque, C.F., J. Klein, S. Ruitton and M. Verlaque. 2011. Biological invasion: the Thau Lagoon, a Japanese biological island in the Mediterranean Sea. In: (H.J. Ceccaldi, I. Dekeyser, M. Girault and G. Stora, eds) Global Change: Mankind-Marine Environment Interactions. Proceedings of the 13th French-Japanese Oceanography Symposium. Springer, Dordrecht. pp. 151–156.Google Scholar

  • Castric-Fey, A., A. Girard and M.Th. L’Hardy-Halos. 1993. The distribution of Undaria pinnatifida on the coast of St Malo (Brittany, France). Bot. Mar. 36: 351–358.Google Scholar

  • Castric-Fey, A., C. Beaupoil, J. Bouchain, E. Pradier and M.Th. L’Hardy-Halos. 1999. The introduced alga Undaria pinnatifida (Laminariales, Alariaceae) in the rocky shore ecosystem of the St Malo area: growth rate and longevity of the sporophyte. Bot. Mar. 42: 83–96.Google Scholar

  • Cecere, E. and A. Petrocelli. 2009. The Mar Piccolo of Taranto. In: (E. Cecere, A. Petrocelli, G. Izzo and A. Sfriso, eds) Flora and Vegetation of the Italian Transitional Water Systems. CoRiLa, Stampa Multigraf, Spinea, Venezia. pp. 195–227.Google Scholar

  • Cecere, E., A. Petrocelli and O.D. Saracino. 2000. Undaria pinnatifida (Fucophyceae, Laminariales) spread in the central Mediterranean: its occurrence in the Mar Piccolo of Taranto (Ionian Sea, southern Italy). Cryptogam., Algol. 21: 305–309.Google Scholar

  • Cecere, E., A. Petrocelli and M. Verlaque. 2004. Morphology and vegetative reproduction of the introduced species Hypnea cornuta (Rhodophyta, Gigartinales) in the Mar Piccolo of Taranto (Italy, Mediterranean Sea). Bot. Mar. 47: 381–388.Google Scholar

  • Cecere, E., A. Petrocelli and M. Verlaque. 2011. Vegetative reproduction by multicellular propagules in Rhodophyta: an overview. Mar. Ecol. 32: 419–437.Google Scholar

  • Cecere, E., A. Petrocelli, M. Belmonte, G. Portacci and F. Rubino. 2016a. Activities and vectors responsible for the biological pollution in the Taranto seas (Mediterranean Sea, southern Italy): a review. Environ. Sci. Pollut. Res. Int. 23: 12797–12810.Google Scholar

  • Cecere, E., G. Portacci and A. Petrocelli. 2016b. Alien seaweeds as indicators of environmental impact: the case of the Phlegrean Lakes Fusaro and Miseno (Gulf of Naples, Tyrrhenian Sea). Biol. Mar. Mediterr. 23: 98–99.Google Scholar

  • Cook, E.J., S. Jenkins, C. Maggs, D. Minchin, F. Mineur, C. Nall and J. Sewell. 2013. Impacts of climate change on non-native species. MCCIP Sci. Review 2013: 155–166.Google Scholar

  • Curiel, D., P. Guidetti, G. Bellemo, M. Scattolin and M. Marzocchi. 2001. The introduced alga Undaria pinnatifida (Laminariales, Alariaceae) in the Lagoon of Venice. Hydrobiologia 477: 209–219.Google Scholar

  • Diamant, A., A. Colorni and M. Ucko. 2007. Parasite and disease transfer between cultured and wild coastal marine fish. CIESM Workshop Monogr. 32: 49–53.Google Scholar

  • Dukes, J.S. and H.A. Mooney. 1999. Does global change increase the success of biological invaders? Trends Ecol. Evol. 14: 135–139.Google Scholar

  • Edwards, F.J. 1987. Climate and Oceanography. In: (A.J. Edwards and S.M. Head, eds) Red Sea. Key environments. Pergamon Press, Oxford. pp. 45–69.Google Scholar

  • Floc’h, J.-Y., R. Pajot and V. Mouret. 1996. Undaria pinnatifida (Laminariales, Phaeophyta) 12 years after its introduction into the Atlantic Ocean. Hydrobiologia 326/327: 217–222.Google Scholar

  • Friedlander, M. and Y. Lipkin. 1982. Rearing of agarophytes and carrageenophytes under field conditions in the eastern Mediterranean. Bot. Mar. 25: 101–105.Google Scholar

  • Friedlander, M. and N. Zelikovitch. 1984. Growth rates, phycocolloid yield and quality of the red seaweeds, Gracilaria sp., Pterocladia capillacea, Hypnea musciformis and Hypnea cornuta in field studies in Israel. Aquaculture 40: 57–66.Google Scholar

  • Galil, B.S. 2009. Taking stock: inventory of alien species in the Mediterranean Sea. Biol. Invasions 11: 359–372.Google Scholar

  • Galil, B.S., S. Nehring and V. Panov. 2007. Waterways as invasion highways – Impact of climate change and globalization. In: (W. Nentwig, ed) Biological Invasions, Ecological Studies, vol. 193. Springer-Verlag, Berlin. pp. 59–74.Google Scholar

  • Galil, B., F. Boero, M.L. Campbell, J.T. Carlton, E. Cook, S. Fraschetti, S. Gollasch, C.L. Hewitt, A. Jelmert, E. Macpherson, A. Marchini, C. Mc Kenzie, D. Minchin, A. Occhipinti-Ambrogi, H. Ojaveer, S. Olenin, S. Piraino and G.M. Ruiz. 2015. ‘Double trouble’: the expansion of the Suez Canal and marine bioinvasions in the Mediterranean Sea. Biol. Invasions 17: 973–976.Google Scholar

  • GISD 2016. Undaria pinnatifida. Global Invasive Species Database. http://www.issg.org/database/species/distribution.asp?si=1031&fr=1&sts=&lang=EN. Accessed 18 May 2016.

  • Gollasch, S. 2002. Hazard analysis of aquatic species invasions. In: (E. Leppäkoski, S. Gollasch and S. Olenin, eds) Invasive aquatic species of Europe-Distribution, impacts and management. Kluwer Academic Publishers, Dordrecht. pp. 447–455.Google Scholar

  • Hewitt, C.L., M.L. Campbell and B. Schaffelke. 2007. Introductions of seaweeds: accidental transfer pathways and mechanisms. Bot. Mar. 50: 326–337.Google Scholar

  • Hopkins, T.S. 1985. Physics of the Sea. In: (R. Margalef, ed.) Western Mediterranean. Key Environments, Pergamon Press, New York. pp. 100–125.Google Scholar

  • James, K., J. Kibele and N.T. Shears. 2015. Using satellite-derived sea surface temperature to predict the potential global range and phenology of the invasive kelp Undaria pinnatifida. Biol. Invasions 17: 3393–3408.Google Scholar

  • Jouffre, D. and M. Amanieu. 1991. ECOTHAU, Programme de recherches intégrées sur l’étang de Thau. Synthèse des résultats. Université Montpellier II Sciences et Techniques, Languedoc, France. pp. 302.Google Scholar

  • Katsanevakis, S., I. Wallentinus, A. Zenetos, E. Leppäkoski, M.E. Çinar, B. Oztürk, M. Grabowski, D. Golani and A.C. Cardoso. 2014. Impacts of invasive alien marine species on ecosystem services and biodiversity: a pan-European review. Aquat. Invasions 9: 391–423.Google Scholar

  • Klein, J.C. and M. Verlaque. 2012. Temporal trends in invasion impacts in macrophyte assemblages of the Mediterranean Sea. Cah. Biol. Mar. 53: 403–407.Google Scholar

  • Knoepffler, M., M.C. Noailles, C.F. Boudouresque and C. Abelard. 1990. Phytobenthos des Pyrénées-Orientales: complément à l’inventaire: présence d’espèces non-indigènes (Sargassum et Undaria). Bull. Soc. Zool. Fr. 115: 37–43.Google Scholar

  • Knoepffler-Péguy, M., T. Belsher, C.F. Boudouresque and M. Lauret. 1985. Sargassum muticum begins to invade the Mediterranean. Aquat. Bot. 23: 291–295.Google Scholar

  • Komatsu, T., T. Ishikawa, N. Yamaguchi, Y. Hori and H. Ohba. 2003. But next time?: unsuccessful establishment of the Mediterranean strain of the green seaweed Caulerpa taxifolia in the Sea of Japan. Biol. Invasions 5: 275–277.Google Scholar

  • Leal, P.P., C.L. Hurd, S.G. Sander, B. Kortner and M.Y. Roleda. 2016. Exposure to chronic and high dissolved copper concentrations impedes meiospore development of the kelps Macrocystis pyrifera and Undaria pinnatifida (Ochrophyta). Phycologia 55: 12–20.Google Scholar

  • Lejeusne, C., P. Chevaldonne, C. Pergent-Martini, C.F. Boudouresque and T. Pérez. 2010. Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends Ecol. Evol. 25: 250–260.Google Scholar

  • Manghisi, A., C. Bertuccio, S. Armeli Minicante, V. Fiore, L. Le Gall, G. Genovese and M. Morabito. 2011. Identifying alien macroalgae through DNA barcoding: the case of Hypnea cornuta (Cystocloniaceae, Rhodophyta). Transit. Waters Bull. 5: 42–49.Google Scholar

  • Marchini, A., J. Ferrario, A. Sfriso and A. Occhipinti-Ambrogi. 2015. Current status and trends of biological invasions in the Lagoon of Venice, a hotspot of marine NIS introductions in the Mediterranean Sea. Biol. Invasions 17: 2943–2962.Google Scholar

  • Masuda, M., Y. Yamagishi, Y.M. Chiang, K. Lewmanomont and X. Bangmei. 1997. Overview of Hypnea (Rhodophyta, Hypneaceae). In: (I.A. Abbott, ed.) Taxonomy of economic seaweeds. With reference to some Pacific species, Volume VI. California Sea Grant College System, La Jolla. pp. 127–133.Google Scholar

  • Meinesz, A. 2007. Methods for identifying and tracking seaweed invasions. Bot. Mar. 50: 373–384.Google Scholar

  • Meinesz, A., T. Belsher, T. Thibaut, B. Antolic, K. Ben Mustapha, C.F. Boudouresque, D. Chiaverini, F. Cinelli, J.M. Cottalorda, A. Djellouli, A. El Abed, C. Orestano, A.M. Grau, L. Ivesa, A. Jaklin, A. Langar, E. Massuti-Pascual, A. Peirano, L. Tunesi, J. de Vau-Gelas, N. Zavodnik and A. Zuljevic. 2001. The introduced green alga Caulerpa taxifolia continues to spread in the Mediterranean. Biol. Invasions 3: 201–210.Google Scholar

  • Mshigeni, K.E. and D.J. Chapman. 1994. Hypnea (Gigartinales, Rhodophyta). In: (I. Akatsuka ed.) Biology of economic algae. SPB Academic Publishing Bv, The Hague. pp. 245–281.Google Scholar

  • NIMPIS. 2016. Undaria pinnatifida additional information. National Introduced Marine Pest Information System, viewed 13 May 2016. http://www.marinepests.gov.au/nimpis.

  • Nyberg, C.D. and I. Wallentinus. 2005. Can species traits be used to predict marine macroalgal introductions? Biol. Invasions 7: 265–279.Google Scholar

  • Occhipinti-Ambrogi, A. and B. Galil. 2010. Marine alien species as an aspect of global change. Adv. Ocean. Limnol. 1: 143–156.Google Scholar

  • Ojaveer, H., B.S. Galil, D. Minchin, S. Olenin, A. Amorim, J. Canning-Clode, P. Chainho, G.H. Copp, S. Gollasch, A. Jelmert, M. Lehtiniemi, C. McKenzie, J. Mikuš, L. Miossec, A. Occhipinti-Ambrogi, M. Pećarević, J. Pederson, G. Quilez-Badia, J.W.M. Wijsman and A. Zenetos. 2014. Ten recommendations for advancing the assessment and management of non-indigenous species in marine ecosystems. Mar. Policy 44: 160–165.Google Scholar

  • Olenin, S., D. Minchin and D. Daunys. 2007. Assessment of biopollution in aquatic ecosystems. Mar. Pollut. Bull. 55: 379–394.Google Scholar

  • O’Loughlin, E., C. McCloud, M. Sierp and G. Westphalen. 2006. Temperature and Salinity Tolerances of Priority Marine Pests. Prepared for PIRSA Biosecurity. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication Number RD06/0751, pp. 45.Google Scholar

  • Parravicini, V., L. Mangialajo, L. Mousseau, A. Peirano, C. Morri, M. Montefalcone, P. Francour, M. Kulbicki and C.N. Bianchi. 2015a. Climate change and warm-water species at the north-western boundary of the Mediterranean Sea. Mar. Ecol. 36: 897–909.Google Scholar

  • Parravicini, V., E. Azzurro, M. Kulbicki and J. Belmaker. 2015b. Niche shift can impair the ability to predict invasion risk in the marine realm: an illustration using Mediterranean fish invaders. Ecology Letters 18: 246–253.Google Scholar

  • Pérez, R., R. Kaas, F. Campello, S. Arbault and O. Barbaroux. 1992. La culture des algues marines dans le Monde. Service de la Documentation et des Publications (SDP) IFREMER, Plouzané. pp. 615.Google Scholar

  • Perrings, C., H. Mooney and M.H. Williamson. 2010. The problem of biological invasions. In: (C. Perrings, H. Mooney and M.H. Williamson, eds) Bioinvasion and globalization. ecology, economics, management and policy. Oxford University Press, New York. pp. 1–18.Google Scholar

  • Peteiro, C., and N. Sánchez. 2012. Comparing salinity tolerance in early stages of the sporophytes of a non-indigenous kelp (Undaria pinnatifida) and a native kelp (Saccharina latissima). Russ. J. Mar. Biol. 38: 197–200.Google Scholar

  • Petrocelli, A., E. Cecere and M. Verlaque. 2013. Alien marine macrophytes in transitional water systems: new entries and reappearances in a Mediterranean coastal basin. BioInvasions Records 2: 177–184.Google Scholar

  • Petronio, B.M., N. Cardellicchio, N. Calace, M. Pietroletti, M. Pietrantonio and L. Caliandro. 2012. Spatial and temporal heavy metal concentration (Cu, Pb, Zn, Hg, Fe, Mn, Hg) in sediments of the Mar Piccolo in Taranto (Ionian Sea, Italy). Water Air Soil Pollut. 223: 863–875.Google Scholar

  • Pierpaoli, I. 1923. Prima contribuzione allo studio delle alghe del Golfo di Taranto. Rivi. Biol. 5: 1–19.Google Scholar

  • Plus M., A. Chapelle, A. Ménesguen, J.-M. Deslous-Paoli and I. Auby. 2003. Modelling seasonal dynamics of biomasses and nitrogen contents in a seagrass meadow (Zostera noltii Hornem.): application to the Thau lagoon (French Mediterranean coast). Ecol. Model. 161: 213–238.Google Scholar

  • Reinbold, T. 1898. Meeresalgen von der Insel Rhodos. Hedwigia 37: 87–90.Google Scholar

  • Rilov, G. and B. Galil. 2009. Marine bioinvasions in the Mediterranean Sea-History, distribution and ecology. In: (G. Rilov and J.A. Crooks, eds) Biological invasions in marine ecosystems, ecological management and geographic perspectives. Ecological Studies, vol. 204. Springer-Verlag, Berlin. pp. 549–575.Google Scholar

  • Roy, H.E., J. Peyton, D.C. Aldridge, T. Bantock, T.M. Blackburn, R. Britton, P. Clark, E. Cook, K. Dehnen-Schmutz, T. Dines, M. Dobson, F. Edwards, C. Harrower, M.C. Harvey, D. Minchin, D.G. Noble, D. Parrott, M.J.O. Pocock, C.D. Preston, S. Roy, A. Salisbury, K. Schönrogge, J. Sewell, R.H. Shaw, P. Stebbing, A.J.A. Stewart and K.J. Walker. 2014. Horizon scanning for invasive alien species with the potential to threaten biodiversity in Great Britain. Glob. Change Biol. 20: 3859–3871.Google Scholar

  • Sagerman, J., S. Enge, H. Pavin and S.A. Wikström. 2014. Divergent ecological strategies determine different impacts on community production by two successful non-native seaweeds. Oecologia 175: 937–946.Google Scholar

  • Saito, Y. 1975. 8.3. Undaria. In: (J. Tokida and H. Hirose, eds) Advance of phycology in Japan. VEB Gustav Fischer Verlag, Jena. pp. 304–320.Google Scholar

  • Sanderson, J. 1990. A preliminary survey of the distribution of the introduced macroalga, Undaria pinnatifida (Harvey) Suringar on the east coast of Tasmania, Australia. Bot. Mar. 33: 153–158.Google Scholar

  • Sfriso, A. and C. Facca. 2013. Annual growth and environmental relationships of the invasive species Sargassum muticum and Undaria pinnatifida in the lagoon of Venice. Estuar. Coast. Shelf Sci. 129: 162–172.Google Scholar

  • Sfriso, A., D. Curiel and A. Rismondo. 2009. The Lagoon of Venice. In: (E. Cecere, A. Petrocelli, G. Izzo and A. Sfriso, eds) Flora and Vegetation of the Italian Transitional Water Systems. CoRiLa, Stampa Multigraf, Spinea, Venezia. pp. 17–80.Google Scholar

  • Sghaier, Y.R., R. Zakhama-Sraieb, S. Mouelhi, M. Vazquez, C. Valle, A.A. Ramos-Espla, J.M. Astier, M. Verlaque and F. Charfi-Cheikhrouha. 2016. Review of alien marine macrophytes in Tunisia. Mediterr. Mar. Sci. 17: 109–123.Google Scholar

  • Simberloff, D. 2009. We can eliminate invasions or live with them: successful management projects. Biol. Invasions 11: 149–157.Google Scholar

  • Simberloff, D. and L. Gibbons. 2004. Now you see them, now you don’t! – population crashes of established introduced species. Biol. Invasions 6: 161–172.Google Scholar

  • Smith, J.E., C.L. Hunter, E.J. Conklin, R. Most, T. Sauvage, C. Squair and C.M. Smith. 2004. Ecology of the invasive red alga Gracilaria salicornia (Rhodophyta) on O’ahu, Hawai’i. Pac. Sci. 58: 325–343.Google Scholar

  • SPSS Inc. 2009. SPSS Base 17.0 for Windows User’s Guide. Chicago. IL.Google Scholar

  • Stachowicz, J.J., J.R. Terwin, R.B. Whitlatch and R.W. Osman. 2002. Linking climate change and biological invasions: Ocean warming facilitates nonindigenous species invasions. Proc. Natl. Acad. Sci. USA. 99: 15497–15500.Google Scholar

  • Streftaris, N. and A. Zenetos. 2006. Alien Marine Species in the Mediterranean-The 100 ‘Worst Invasives’ and their Impact. Mediterr. Mar. Sci. 7: 87–118.Google Scholar

  • Stuart, M.D., C.L. Hurd and M.T. Brown. 1999. Effects of seasonal growth rate on morphological variation of Undaria pinnatifida (Alariaceae, Phaeophyceae). Hydrobiologia 398/399: 191–199.Google Scholar

  • Suárez Jiménez, R., C.D. Hepburn, G.A. Hyndes, R.J. McLeod, R.B. Taylor and C.L. Hurd. 2015. Do native subtidal grazers eat the invasive kelp Undaria pinnatifida? Mar. Biol. 162: 2521–2526.Google Scholar

  • Valentine, J.P., R.H. Magierowski and C.R. Johnson. 2007. Mechanisms of invasion: establishment, spread and persistence of introduced seaweed populations. Bot. Mar. 50: 351–360.Google Scholar

  • Verlaque, M. 2001. Checklist of the macroalgae of Thau Lagoon (Hérault, France), a hot spot of marine species introduction in Europe. Oceanol. Acta 24: 29–49.Google Scholar

  • Verlaque, M., C.F. Boudouresque and F. Mineur. 2007. Oyster transfers as a vector for marine species introductions: a realistic approach based on the macrophytes. CIESM Workshop Monogr. 32: 39–47.Google Scholar

  • Verlaque, M., S. Ruitton, F. Mineur and C.F. Boudouresque. 2015. Hypnea cornuta. In: (F. Briand, ed.) CIESM Atlas of Exotic Species in the Mediterranean, vol 4. Macrophytes. CIESM Publishers, Monaco. pp. 144–145.Google Scholar

  • Vermeij, G.J. 1996. An agenda for invasion biology. Biol. Conserv. 78: 3–9.Google Scholar

  • Wallentinus, I. 2007. Alien species alert: Undaria pinnatifida (wakame or Japanese kelp). ICES Coop. Res. Rep. 283: 1–36.Google Scholar

  • Walther, G.R., A. Roques, P.E. Hulme, M.T. Sykes, P. Pyšek, I. Kühn, M. Zobel, S. Bacher, Z. Botta-Dukát, H. Bugmann, B. Czúcz, J. Dauber, T. Hickler, V. Jarošik, M. Kenis, S. Klotz, D. Minchin, M. Moora, W. Nentwig, J. Ott, V.E. Panov, B. Reineking, C. Robinet, V. Semenchenko, W. Solarz, W. Thuiller, M. Vilà, K. Vohland and J. Settele. 2009. Alien species in a warmer world: risks and opportunities. Trends Ecol. Evol. 24: 686–693.Google Scholar

  • Watanabe, Y., G.N. Nishihara, S. Tokunaga and R. Terada. 2014. The effect of irradiance and temperature responses and the phenology of a native alga, Undaria pinnatifida (Laminariales), at the southern limit of its natural distribution in Japan. J. Appl. Phycol. 26: 2405–2415.Google Scholar

  • Williamson, M.H. 1996. Biological invasions. Chapman and Hall, London. pp. 245.Google Scholar

  • Yamagishi, Y., M. Masuda, T. Abe, S. Uwai, K. Kogame, S. Kawaguchi and S.M. Phang. 2003. Taxonomic notes on marine algae from Malaysia. XI. Four species of Rhodophyta. Bot. Mar. 46: 534–547.Google Scholar

  • Yokoya, N.S. and E.C. Oliveira. 1992. Temperature responses of economically important red algae and their potential for mariculture in Brazilian waters. J. Appl. Phycol. 4: 339–345.Google Scholar

  • Zenetos, A., S. Gofas, M. Verlaque, M. Çinar, E. Garcia Raso, C.N. Bianchi, C. Morri, E. Azzurro, M. Bilecenoglu, C. Froglia, I. Siokou, D. Violanti, A. Sfriso, G. San Martin, A. Giangrande, T. Katagan, E. Ballesteros, A. Ramos Espla, F. Mastrototaro, O. Ocaña, A. Zingone, M.C. Gambi and N. Streftaris. 2010. Alien species in the Mediterranean Sea by 2010. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part I. Spatial distribution. Mediterr. Mar. Sci. 11: 381–493.Google Scholar

  • Zenetos, A., S. Gofas, C. Morri, A. Rosso, D. Violanti, E. Garcia Raso, M.E. Çinar, A. Almogi-Labin, A.S. Ates, E. Azzurro, E. Ballesteros, C.N. Bianchi, M. Bilecenoglu, M.C. Gambi, A. Giangrande, C. Gravili, O. Hyams-Kaphzan, P.K. Karachle, S. Katsanevakis, L. Lipej, F. Mastrototaro, F. Mineur, P.K. Pancucci-Papadopoulou, A. Ramos Espla, C. Salas, G. San Martin, A. Sfriso, N. Streftaris and M. Verlaque. 2012. Alien species in the Mediterranean Sea by 2012. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part 2. Introduction trends and pathways. Mediterr. Mar. Sci. 13: 328–352.Google Scholar

About the article

Ester Cecere

Ester Cecere is Senior Researcher and head of the Phycology Laboratory. The main topics of her studies are: biodiversity of marine benthic macroalgae; floristic and vegetational studies of marine benthic communities, in particular in Transitional Water Systems; cultivation of economically important marine benthic macroalgae; biology of marine benthic macroalgae, with particular reference to the vegetative propagation; bioremediation with marine benthic macroalgae (CO2 sequestration, nutrient abatement); evaluation of anthropic impact; taxonomy, biology and physio-ecology of marine benthic macroalgae, in particular non-indigenous species.

Giorgio Alabiso

Giorgio Alabiso is Researcher (retired) and head of the Oceanography Laboratory. His research activity is focused on: studies on the interference of marine biofilm on corrosion resistance of stainless steels in polar sea water; studies on chemical-physical conditions of seawater and on biochemical composition of particulate matter; planning of cells for carbon dioxide sequestration by seaweeds; planning of a photobioreactor for CO2 sequestration by marine biomasses for biodiesel production; planning pilot plants for interdisciplinary studies (biological and corrosionistic); bioremediation by seaweeds; studies on nutrient uptake by seaweeds.

Roberto Carlucci

Roberto Carlucci is Assistant Professor in Ecology. His main research interest is focused on the application of biological, statistical and mathematical models to marine ecology and population dynamics. In particular, his research is oriented to provide scientific advice to regional, national and EU administrations for the setting of the best practice in the Mediterranean for a sustainable exploitation of marine resources. He uses the statistical and geostatistical packages (SPSS, Statistica, PRIMER V, ISATIS – Geovariance) and ARCVIEW GIS. He has (co)-authored more than 70 scientific publications in congress proceedings, national and international ISI journals. RC is a reviewer for international ISI journals.

Antonella Petrocelli

Antonella Petrocelli is a researcher at the Phycology Laboratory. Her research activity deals with marine biology, phycology and ecology with regard to: biodiversity; habitat destruction; bioremediation; biotechnologies; ecophysiology; alien seaweeds; cultivation in little and meso scale of marine macroalgae; floristic and vegetational studies in marine benthic communities; biology of seaweeds with particular reference to vegetative propagation; active metabolites from marine macroalgae; ecophysiology of seaweeds with particular reference to photosynthesis; seagrasses.

Marc Verlaque

Marc Verlaque is a retired researcher who continues his research activities in the GIS Posidonie, a non-profit organization hosted by the Mediterranean Institute of Oceanography (Aix-Marseille University). His study fields deal with marine macrophytes (algae and sea grasses), biology of conservation and species invasions, marine ecology, taxonomy, biogeography and phylogeny.

Received: 2016-06-14

Accepted: 2016-10-12

Published Online: 2016-11-12

Published in Print: 2016-12-01

Citation Information: Botanica Marina, Volume 59, Issue 6, Pages 451–462, ISSN (Online) 1437-4323, ISSN (Print) 0006-8055, DOI: https://doi.org/10.1515/bot-2016-0053.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Antonella Petrocelli, Boris Antolić, Luca Bolognini, Ester Cecere, Ivan Cvitković, Marija Despalatović, Annalisa Falace, Stefania Finotto, Ljiljana Iveša, Vesna Mačić, Mauro Marini, Martina Orlando-Bonaca, Fernando Rubino, Benedetta Trabucco, and Ante Žuljević
Marine Pollution Bulletin, 2018

Comments (0)

Please log in or register to comment.
Log in