Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Botanica Marina

Editor-in-Chief: Dring, Matthew J.

6 Issues per year


IMPACT FACTOR 2016: 1.239
5-year IMPACT FACTOR: 1.373

CiteScore 2016: 1.28

SCImago Journal Rank (SJR) 2016: 0.456
Source Normalized Impact per Paper (SNIP) 2016: 0.841

Online
ISSN
1437-4323
See all formats and pricing
More options …
Volume 59, Issue 6

Issues

The genus Ramicrusta (Peyssonneliales, Rhodophyta) in the Caribbean Sea, including Ramicrusta bonairensis sp. nov. and Ramicrusta monensis sp. nov.

David L. Ballantine
  • Corresponding author
  • Department of Marine Sciences, University of Puerto Rico, Mayagüez, Puerto Rico 00681, United States of America
  • Department of Botany, NHB166, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, United States of America
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hector Ruiz
  • Department of Marine Sciences, University of Puerto Rico, Mayagüez, Puerto Rico 00681, United States of America
  • P.O. Box 1126, Hormigueros, Puerto Rico 00660, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chad Lozada-Troche
  • Department of Marine Sciences, University of Puerto Rico, Mayagüez, Puerto Rico 00681, United States of America
  • Department of Biology, P.O. Box 372230, University of Puerto Rico-Cayey Campus, Cayey, Puerto Rico 00737, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ James N. Norris
  • Department of Botany, NHB166, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-11-23 | DOI: https://doi.org/10.1515/bot-2016-0086

Abstract

Two new species of Ramicrusta (Peyssonneliaceae, Rhodophyta), Ramicrusta bonairensis from Bonaire, The Netherlands Antilles and Puerto Rico and Ramicrusta monensis from Puerto Rico are described on the basis of both morphological and genetic criteria. Both grow closely appressed to their substrata, a characteristic that differs from their Caribbean congener, Ramicrusta textilis, which forms flared or broadly fluted, expanded erect tissue, and is not closely appressed throughout. The new species also share with each other, the character, seen in microscopic sections, of appearing layered due to an abrupt decrease in cell size that occurs in the perithallus. Ramicrusta bonairensis is thicker than R. monensis, forming crusts up to 840 μm thick and carposporangia that measure up to 80 μm in length. Ramicrusta monensis is less thick, 585–650 μm, and produces smaller carposporangia, 40–50 μm in length. Overgrowing thalli in R. monensis are commonly observed, frequently resulting in gaps visible in transverse microscopic sections. Irregular perithallial growth may also result in hollow regions. Male gametophytes are reported for the first time in R. textilis and in R. monensis. Mixed reproductive phases in individual thalli, with both male gametophytic structures and tetrasporangial nemathecia, are also observed in R. monensis.

Keywords: Caribbean; Peyssonneliaceae; Ramicrusta bonairensis; Ramicrusta monensis; Ramicrusta textilis

References

  • Akaike, H. 1974. A new look at the statistical model identification. IEEE T Automat. Contr. 19: 716–723.Google Scholar

  • Antonius, A. 1999. Metapeyssonnelia corallepida, a new coral-killing red alga on Caribbean reefs. Coral Reefs 18: 301.CrossrefGoogle Scholar

  • Ballantine, D.L. and C. Lozada-Troche. 2008. Champia harveyana (Champiaceae, Rhodophyta) from Puerto Rico, Caribbean Sea. Bot. Mar. 51: 388–398.Google Scholar

  • Ballantine, D.L. and H. Ruíz. 2005. Two Peyssonnelia species (Peyssonneliaceae, Rhodophyta) from Puerto Rico including Peyssonnelia flavescens sp. nov. Phycologia 44: 328–334.Google Scholar

  • Ballantine, D.L and H. Ruíz. 2006. Peyssonnelia imbricata sp. nov. (Peyssonneliaceae, Rhodophyta) from Puerto Rico, Caribbean Sea. Bot. Mar. 49: 431–437.Google Scholar

  • Ballantine, D.L. and H. Ruíz. 2010. Two new deep-water Peyssonnelia species, P. iridescens and P. gigaspora (Peyssonneliaceae, Rhodophyta), from Puerto Rico, Caribbean Sea. Phycologia 49: 537–544.Google Scholar

  • Ballantine, D.L. and H. Ruíz. 2011. Metapeyssonnelia milleporoides a new species of coral-killing red alga (Peyssonneliaceae) from Puerto Rico, Caribbean Sea. Bot. Mar 54: 47–51.Google Scholar

  • Ballantine, D.L. and H. Ruíz. 2012. Peyssonnelia stratosa (Peyssonneliaceae, Rhodophyta), a new shallow-water species from Puerto Rico, Caribbean Sea. Cryptog. Algol. 33: 235–244.Google Scholar

  • Ballantine, D.L. and H. Ruíz. 2013. A unique red algal reef formation in Puerto Rico. Coral Reefs 32: 411.CrossrefGoogle Scholar

  • Ballantine, D.L., A. Athanasiadis and H. Ruíz, H. 2011. Notes on the benthic marine algae of Puerto Rico. X. Additions to the flora. Bot. Mar. 54: 293–302.Google Scholar

  • Ballantine, D.L., C. Lozada-Troche and H. Ruíz. 2014. Metapeyssonnelia tangerina (Peyssonneliaceae, Rhodophyta), a new species associated with coral reef habitats in Puerto Rico, Caribbean Sea. Phycol. Res. 62: 197–205.Google Scholar

  • Barbara, I., T. Gallardo, J. Cremades, R. Barreiro, I. Maneiro and G.W. Saunders. 2013. Pseudopolyides furcellatus (Gigartinales, Rhodophyta) from the Iberian Peninsula, a new erect member of the Cruoriaceae based on morphological and molecular evidence. Phycologia 52: 191–203.Google Scholar

  • Brummitt, R.K. and C.E. Powell (Eds.). 1992. Authors of Plant Names: a list of authors of scientific names of plants, with recommended standard forms of their names, including abbreviations. Royal Botanic Gardens, Kew, Richmond, Surrey, UK, pp. 732.Google Scholar

  • Chualain, F.N., C.A. Maggs, G.W. Saunders and M.D. Guiry. 2004. The invasive genus Asparagopsis (Bonnemaisoniaceae, Rhodophyta): molecular systematics, morphology and ecophysiology of Falkenbergia isolates. J. Phycol. 40: 1112–1126.Google Scholar

  • Darriba, D., G.L. Taboada, R. Doallo and D. Posada. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9: 772.CrossrefGoogle Scholar

  • Dawson, E.Y. 1953. Marine Red Algae of Pacific Mexico, Part 1: Bangiales to Corallinaceae subf. Corallinoidae. Allan Hancock Pac. Exped. 17: 1–239.Google Scholar

  • Denizot, M. 1968. Les algues floridées encroutantes (à l’éxclusion des Corallinacées). Laboratoire de Cryptogamie, Muséum National d’Histoire Naturelle, Paris, pp. 310.Google Scholar

  • Dixon, K.R. 2010. Diversity and systematics of Peyssonneliaceae (Rhodophyta) from Vanuatu and southeastern Australia. Ph.D. Dissertation. Univ. Melbourne, pp. 359.Google Scholar

  • Dixon, K.R. and G.W. Saunders. 2013. DNA barcoding and phylogenetics of Ramicrusta and Incendia gen. nov., two early diverging lineages of the Peyssonneliaceae (Rhodophyta). Phycologia 52: 82–108.CrossrefGoogle Scholar

  • Eckrich, C.E. and M.S. Engel. 2013. Coral overgrowth by an encrusting red alga (Ramicrusta sp.) overgrowing scleractinian corals, gorgonians, a hydrocoral, sponges, and other algae in Lac Bay, Bonaire, Dutch Caribbean. Coral Reefs 32: 81–84.Google Scholar

  • Eckrich, C.E., R.B.J. Peachey and M.S. Engel. 2011. Crustose, calcareous algal bloom (Ramicrusta sp.) overgrowing scleractinian corals, gorgonians, a hydrocoral, sponges, and other algae in Lac Bay, Bonaire, Dutch Caribbean. Coral Reefs 30: 131.Google Scholar

  • Genovese, G., C. Faggio, C. Gugliandolo, A. Torre, A. Spano, M. Morabito and T.L. Maugeri. 2012. In vitro evaluation of antibacterial activity of Asparagopsis taxiformis from the Straits of Messina against pathogens relevant in aquaculture. Mar. Environ. Res. 73: 1–6.Google Scholar

  • Guiry, M.D. and G.M. Guiry. 2016. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org: searched on 04 February 2016.

  • Heydrich, F. 1897. Neue Kalkalgen von Deutsch-Neu-Guinea (Kaiser Wilhelms-Land). Bibliotheca Botanica 7: 1–11.Google Scholar

  • Huelsenbeck, J.P. and F. Ronquist. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755.Google Scholar

  • Jackson, J., Donovan, K. Cramer and V. Lam (Eds.). 2014. Status and trends of Caribbean Coral Reefs: 1970–2012. Global Coral Reef Monitoring Network, Washington, DC.Google Scholar

  • Kato, A., M. Baba, H. Kawai and M. Masuda. 2006. Reassessment of the little-known crustose red algal genus Polystrata (Gigartinales), based on morphology and SSU rDNA sequences. J. Phycol. 42: 922–933.Google Scholar

  • Krayesky D.M., J.N. Norris, P.W. Gabrielson, D. Gabriel and S. Fredericq. 2009. A new order of red algae based on the Peyssonneliaceae, with an evaluation of the ordinal classification of the Florideophyceae (Rhodophyta). Proc. Biol. Soc. Wash. 122: 364–391.Web of ScienceGoogle Scholar

  • Lanave, C., G. Preparata, C. Saccone and G. Serio. 1984. A new method for calculating evolutionary substitution rates. J. Mol. Evol. 20: 86–93.Google Scholar

  • Lessios, H.A., D.R. Robertson, and J.D. Cubit. 1984. Spread of Diadema mass mortality through the Caribbean. Science 226: 335–337.Google Scholar

  • Pueschel, C.M. and G.W. Saunders. 2009. Ramicrusta textilis sp. nov. (Peyssonneliaceae, Rhodophyta), an anatomically complex Caribbean alga that overgrows corals. Phycologia 48: 480–491.Google Scholar

  • Ragan, M.A., C.J. Bird, E.L. Rice, R.R. Gutell, C.A. Murphy and R.K. Singh. 1994. A molecular phylogeny of the marine red algae (Rhodophyta) based on the nuclear small-subunit rRNA gene. Proc. Natl. Acad. Sci. 91: 7276–7280.Google Scholar

  • Reyes-Contreras, M., A. Kazandijian and D.L. Ballantine. 2016. Identification of compounds of allelopathic extracts from two species of Metapeyssonnelia (Rhodophyta) growing on the hydrocoral, Millepora complanata, in Puerto Rico. Gulf Carib. Res. 27: 33–41.Google Scholar

  • Rodriguez, R., J.L. Oliver, A. Marin and J.R. Medina. 1990. The general stochastic model of nucleotide substitution. J. Theoret. Biol. 142: 485–501.Google Scholar

  • Saunders, G.W. 1993. Gel purification of red algal genomic DNA: an inexpensive and rapid method for the isolation of polymerase chain reaction-friendly DNA. J. Phycol. 29: 251–254.Google Scholar

  • Saunders, G.W. 2005. Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Phil. Trans. R. Soc. B 360: 1879–1888.Google Scholar

  • Saunders, G.W. and G.T. Kraft. 1994. Small-subunit rRNA gene sequences from representatives of selected families of the Gigartinales and Rhodymeniales (Rhodophyta). 1. Evidence for the Plocamiales ord. nov. Can. J. Bot. 72: 1250–1263.Google Scholar

  • Saunders, G.W., A. Chiovitti and G.T. Kraft. 2004. Small-subunit rDNA sequences from representatives of selected families of the Gigartinales and Rhodymeniales (Rhodophyta). 3. Delineating the Gigartinales sensu strict. Can. J. Bot. 82: 43–74.Google Scholar

  • Silvestro, D. and I. Michalak. 2012. RaxmlGUI: A graphical front-end for RAxML. Organisms Diversity and Evol. 12: 335–337.Google Scholar

  • Swofford, D.L. 2002. PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4.1. Sinauer Associates, Sunderland, MA, USA.Google Scholar

  • Thiers, B. 2016. Index Herbariorum: A Global Directory of Public Herbaria and Associated Staff. New York Botanical Garden’s Virtual Herbarium, Bronx, New York, USA. [continuously updated]. http://sweetgum.nybg.org/ih/.

  • Verlaque, M. 1978. Recherches sur le genre Peyssonnelia (Rodophyceae). X. Présence de Peyssonnelia codana (Rosenvinge) Denizot en Méditerranée. Giorn. Bot. Ital. 112: 29–39.Google Scholar

  • Verlaque, M., E. Ballesteros and A. Antonius. 2000. Metapeyssonnelia corallepida sp. nov. (Peyssonneliaceae, Rhodophyta), an Atlantic encrusting red alga overgrowing corals. Bot. Mar. 43: 191–200.Google Scholar

  • Zhang, D.-R and J.H. Zhou. 1981. Ramicrusta, a new genus of Peyssonneliaceae. [er ke zao ke yi xin shu zhi ke zao shu]. Oceanol. Limnol. Sinica 12: 538–544.Google Scholar

About the article

David L. Ballantine

David L. Ballantine is presently a research associate in the Department of Botany, U.S. National Herbarium, Smithsonian Institution. He spent over 30 years at the Department of Marine Sciences, University of Puerto Rico where his research dealt primarily with systematics and ecology of Caribbean marine algae.

Hector Ruiz

Hector Ruiz earned his doctorate degree in Marine Biology from the University of Puerto Rico (Mayaguez Campus) with an emphasis on ecology and taxonomy of algae. Dr. Ruiz is the Executive Director of HJR Reefscaping. HJR Reefscaping, in collaboration with local and federal agencies, has completed various environmental restoration projects in mangrove keys, coral reefs and seagrass habitats.

Chad Lozada-Troche

Chad Lozada-Troche works at the University of Puerto Rico at Cayey, where he teaches genetics, mycology and botany. His research focus has been centred on macroalgal molecular systematics, particularly Rhodymeniales species from Puerto Rico.

James N. Norris

James N. Norris is currently a research scientist and curator emeritus in the Department of Botany, National Museum of Natural History, Smithsonian Institution. He has spent over 40 years at the museum and US National Herbarium, focusing his research on systematics and ecology of marine algae of Gulf of California, Pacific Mexico and Panama and the tropical and subtropical western Atlantic.


Received: 2016-08-08

Accepted: 2016-10-25

Published Online: 2016-11-23

Published in Print: 2016-12-01


Citation Information: Botanica Marina, Volume 59, Issue 6, Pages 417–431, ISSN (Online) 1437-4323, ISSN (Print) 0006-8055, DOI: https://doi.org/10.1515/bot-2016-0086.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in