Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Botanica Marina

Editor-in-Chief: Dring, Matthew J.

6 Issues per year

IMPACT FACTOR 2016: 1.239
5-year IMPACT FACTOR: 1.373

CiteScore 2016: 1.28

SCImago Journal Rank (SJR) 2016: 0.456
Source Normalized Impact per Paper (SNIP) 2016: 0.841

See all formats and pricing
More options …
Volume 60, Issue 2 (Apr 2017)


Morphological changes with depth in the calcareous brown alga Padina pavonica

Katharina Bürger
  • Koordinationsstelle für Fledermausschutz und -forschung in Österreich (KFFÖ), Fritz-Störk-Strasse 13, A-4060 Leonding, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elisabeth L. Clifford
  • Department of Limnology and Bio-Oceanography, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael Schagerl
  • Corresponding author
  • Department of Limnology and Bio-Oceanography, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-03-15 | DOI: https://doi.org/10.1515/bot-2016-0069


The calcareous brown alga Padina pavonica (L.) Thivy (Phaeophyceae, Dictyotales) is common worldwide in the sublittoral of warm-temperate coasts. We studied its distribution and changes of morphology and thallus anatomy along a light gradient. Specimens were collected at different depths in the Bay of Calvi (Corsica, Mediterranean) during spring and autumn. We sampled individuals for mapping and recorded a significant decrease of both coverage and number of individuals with depth, but an increase in frond size. Frond thickness and cell volumes (cell length, height, width) were measured and compared to irradiance levels and between two seasons. Fronds in spring were small and thick and contained larger cells than specimens collected in autumn. Additionally, fronds from shallow areas were thicker than those from deeper areas. Fronds always consisted of three cell layers, and both surfaces were calcified. A carbonate cover (carbonate content per unit dry mass and frond area) was present on both surfaces in both seasons, with a significantly lower cover in spring. In spring, the beginning of the growing season for Padina, the growth rates at sheltered and exposed sites and from different depths were all similar, averaging 0.45 mm day−1.

Keywords: anatomy; calcification; cell volume; growth rate; mapping; Padina pavonica


  • Airoldi, L. 2000. Responses of algae with different life histories to temporal and spatial variability of disturbances in subtidal reefs. Mar. Ecol. Prog. Ser. 195: 81–92.Google Scholar

  • Balata, D. and L. Piazzi. 2008. Patterns of diversity in rocky subtidal macroalgal assemblages in relation to depth. Bot. Mar. 51: 464–471.Google Scholar

  • Bischof, K., R. Rautenberger, L. Brey and J.L. Pérez-Lloréns. 2006. Physiological acclimation to gradients of solar irradiance within mats of the filamentous green macroalga Chaetomorpha linum from southern Spain. Mar. Ecol. Prog. Ser. 306: 165–175.Google Scholar

  • Bitter, G. 1899. Zur Anatomie und Physiologie von Padina pavonia. Ber. Dt. Bot. Ges. 17: 255–274.Google Scholar

  • Borowitzka, M.A. and A.W.D. Larkum. 1977. Calcification in the green alga Halimeda. I. An ultrastructure study of thallus development. J. Phycol. 13: 6–16.Google Scholar

  • Borowitzka, M.A., A.W.D. Larkum and C.D. Nockolds. 1974. A scanning microscope study of the structure and organization of the calcium carbonate deposits of algae. Phycologia 13: 195–203.Google Scholar

  • Braune, W. 2008. Meeresalgen: Ein Farbbildführer zu den verbreiteten benthischen Grün-, Braun- und Rotalgen der Weltmeere. Gantner publ. house, Switzerland. pp. 596.Google Scholar

  • Carter, P.W. 1927. The life-history of Padina pavonia. I. The structure and cytology of the tetrasporangial plant. Ann. Bot. XLI (CLXI): 139–159.Google Scholar

  • Chapman, V.J. and D.J. Chapman. 1973. The Algae. 2nd edition. MacMillan Press Ltd., London. p. 196.Google Scholar

  • Creed, J.C., T.A. Norton and J.M. Kain. 1997. Intraspecific competition in Fucus serratus germlings: The interaction of light, nutrients and density. J. Exp. Mar. Biol. Ecol. 212: 211–223.Google Scholar

  • De Beer, D. and A.W.D Larkum. 2001. Photosynthesis and calcification in the calcifying algae Halimeda discoidea studied with microsensors. Plant Cell Environ. 24: 1209–1217.Google Scholar

  • De los Santos, C.B., J. Pérez-Lloréns and J.J. Vergara. 2009. Photosynthesis and growth in macroalgae: linking functional-form and power-scaling approaches. Mar. Ecol. Prog. Ser. 377: 112–122.Google Scholar

  • Doust, J.L. and L.L. Doust. 1990. Plant reproductive ecology: patterns and strategies. Oxford University Press, Canada. p. 275.Google Scholar

  • Einav, R., S. Breckle and S. Beer. 1995. Ecophysiological adaptation strategies of some intertidal marine macroalgae of the Israeli Mediterranean coast. Mar. Ecol. Prog. Ser. 125: 219–228.Google Scholar

  • Enriquez, S., S. Agustí and C.M. Duarte. 1994. Light absorption by marine macrophytes. Oecologia 98: 121–129.Google Scholar

  • Enríquez, S., C.M. Duarte and K. Sand-Jensen. 1995. Patterns in the photosynthetic metabolism of Mediterranean macrophytes. Mar. Ecol. Prog. Ser. 119: 243–252.Google Scholar

  • Fritsch, F.E. 1965. The structure and the reproduction of the algae. Volume 2, Cambridge University Press, London. pp. 305–307.Google Scholar

  • Gil-Díaz, T., R. Haroun, F. Tuya, S. Betancor and M.A.Viera-Rodríguez. 2014. Effects of ocean acidification on the brown alga Padina pavonica: Decalcification due to acute and chronic events. PLoS One 9: e108630.Google Scholar

  • Goodsell, P.J., A.J. Underwood and M.G. Chapman. 2009. Evidence necessary for taxa to be reliable indicators of environmental conditions or impacts. Mar Poll Bull. 58: 323–331.Google Scholar

  • Gómez Garreta, A., J.R. Lluch, C.B.M. Martí and A.R.M. Siguan. 2007. On the presence of fertile gametophytes of Padina pavonica (Dictyotales, Phaeophyceae) from the Iberian coasts. Anales de Jardín Botánica de Madrid. 64: 27–33.Google Scholar

  • Guiry, M.D. and G.M. Guiry. 2016. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 08 July 2016.

  • Hall-Spencer, J.M., L.R. Pettit, L.A. Newcomb, E. Carrington, C.W. Smart, M.B. Hart1 and M. Milazzo. 2015. It will take more than seaweed to deal with ocean acidification. Eur. J. Phycol. 50: 198.Google Scholar

  • Han, T., Y.-S. Han, J.M. Kain and D.-P. Häder. 2003. Thallus differentiation of photosynthesis, growth, reproduction, and UV-B sensitivity in the green alga Ulva pertusa (Chlorophyceae). J. Phycol. 39: 712–721.Google Scholar

  • Hay, M.E. 1986. Functional geometry of seaweeds: ecological consequences of thallus layering and shape in contrasting light environments. On the Economy of Plant Form and Function. Chapter 19. Cambridge University Press, New York, USA. pp. 635–666.Google Scholar

  • Herbert, R.J.H., L. Ma, A. Marston, W.F. Farnham, I. Tittley and R.C. Cornes. 2016. The calcareous brown alga Padina pavonica in southern Britain: population change and tenacity over 300 years. Mar. Biol. 163: 46–61.Google Scholar

  • Hereu, B. 2006. Depletion of palatable algae by sea urchins and fishes in a Mediterranean subtidal community. Mar. Ecol. Prog. Ser. 313: 95–103.Google Scholar

  • Johansen, H.W. 1981. Coralline algae, a first synthesis. CRC, Boca Raton, FL, USA. pp. 193–208.Google Scholar

  • King, R.J. and W. Schramm. 1976. Photosynthetic rates of benthic marine algae in relation to light intensity and seasonal variations. Mar. Biol. 37: 215–222.Google Scholar

  • Littler, M.M. and K.E. Arnold. 1982. Primary productivity of marine macroalgal functional-form groups from southwestern North America. J. Phycol. 18: 307–311.Google Scholar

  • Littler, M.M. and D.S. Littler. 1980. The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form model. Am. Nat. 116: 25–44.Google Scholar

  • Littler, M.M., D.S. Littler and P.R. Taylor. 1983. Evolutionary strategies in a tropical barrier reef system: functional from groups of marine macroalgae. J. Phycol. 19: 229–237.Google Scholar

  • Lüning, K. 1985. Meeresbotanik. Verbreitung, Ökophysiologie und Nutzung der marinen Makroalgen. Thieme, Stuttgart, New York.Google Scholar

  • Lüning. K. and M.J. Dring. 1985. Action spectra and spectral quantum yield of photosynthesis in marine macroalgae with thin and thick thalli. Mar. Biol. 87: 119–129.Google Scholar

  • Markager, S. and K. Sand-Jensen. 1992. Light requirements and depth zonation of marine macroalgae. Mar. Ecol. Prog. Ser. 88: 83–92.Google Scholar

  • McConnaughey, A.T. 1998. Acid secretion, calcification, and photosynthetic carbon concentrating mechanisms. Can. J. Bot. 76: 1119–1126.Google Scholar

  • McConnaughey, A.T. and J.F. Whelan. 1997. Calcification generates protons for nutrient and bicarbonate uptake. Earth Sci. Rev. 42: 95–117.Google Scholar

  • Ogden, J.C. and P.S. Lobel. 1978. The role of herbivorous fishes and urchins in coral reef communities. Environ. Biol. Fish. 3: 49–63.Google Scholar

  • Okazaki, M., A. Pentecost, Y. Tanaka and M. Miyata. 1986. A study of calcium carbonate deposition in the genus Padina (Phaeophyceae, Dictyotales). Brit. Phycol. J. 21: 217–224.Google Scholar

  • Padilla, D.K. 1989. Algal structural defenses: form and calcification in resistance to tropical limpets. Ecology 70: 835–842.Google Scholar

  • Padilla, D.K. and B.J. Allen. 2000. Paradigm lost: reconsidering functional form and group hypotheses in marine ecology. J. Exp. Mar. Biol. Ecol. 250: 207–221.Google Scholar

  • Piazzi, L., G. Pardi, D. Balata, E. Cecchi and F. Cinelli. 2002. Seasonal dynamics of a subtidal north-western Mediterranean macroalgal community in relation to depth and substrate inclination. Bot. Mar. 45: 243–252.Google Scholar

  • Ramon, E. and I. Friedmann. 1966. The gametophyte of Padina in the Mediterranean. Proc. Int. Seaweed Symp. 5: 183–196.Google Scholar

  • Raven, J.A., F.A. Smith and S.M. Glidewell. 1979. Photosynthetic capacities and biological strategies of giant-celled and small-celled macro-algae. New Phytol. 83: 299–309.Google Scholar

  • Reinke, J. 1878. Entwicklungsgeschichtliche Untersuchungen über die Dictyotaceen des Golfs von Neapel. Nova Acta Academiae Caesareae Leopoldino-Carolinae Germanicae Naturae Curiosorum 40: 1–56.Google Scholar

  • Rinne H., S. Salovius-Laurén and J. Mattila. 2011. The occurrence and depth penetration of macroalgae along environmental gradients in the northern Baltic Sea. Estuar. Coast. Shelf Sci. 94: 182–191.Google Scholar

  • Sala, E. and C.F. Boudouresque. 1997. The role of fishes in the organization of a Mediterranean sublittoral community. I. Algal communities. J. Exp. Mar. Biol. Ecol. 212: 25–44.Google Scholar

  • Steneck, R.S. 1982. A limpet-coralline alga association: adaptations and defenses between a selective herbivore and its prey. Ecology 63: 507–522.Google Scholar

  • Thornber, C.S. 2006. Functional properties of the isomorphic biphasic algal life cycle. Integr. Comp. Biol. 46: 605–614.Google Scholar

  • Trono, G.C. 1997. Field guide and atlas of the seaweeds resources of the Philippines. Bookmark. Makati City.Google Scholar

  • Turna, İ.İ., Ö.O. Ertan, M. Cormaci and G. Furnari. 2002. Seasonal variations in the biomass of macroalgal communities from the Gulf of Antalya (north-eastern Mediterranean). Turkish J. Bot. 26: 19–29.Google Scholar

  • Valladares F., S. Matesanz, F. Guilhaumon, M.B. Araújo, L. Balaguer, M. Benito-Garzón, W. Cornwell, E. Gianoli, M. van Kleunen, D.E. Naya, A.B. Nicotra, H. Poorter and M.A. Zavala. 2014. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17: 1351–1364.Google Scholar

  • Van den Hoek, C., H.M. Jahns and D.G. Mann. 1993. Algen. Georg Thieme Verlag, Stuttgart, New York. Kapitel 1: Abteilung Heterokontophyta – Klasse 9: Phaeophyceae. pp. 152–153.Google Scholar

  • Wolcott, B.D. 2007. Mechanical size limitation and life-history strategy of an intertidal seaweed. Mar. Ecol. Prog. Ser. 338: 1–10.Google Scholar

  • Wynne, M.J. and O. de Clerck. 1999. First reports of Padina antillarum and P.glabra from Florida, with a key to the western Atlantic species of the genus. Caribb. J. Sci. 35: 286–295.Google Scholar

About the article

Katharina Bürger

Katharina Bürger studied marine Biology at the University of Vienna and worked on this project for her Master’s thesis under the supervision of Dr. Michael Schagerl. She is a self-employed Biologist in bat conservation and currently the coordinator of the Association of Bat Conservation and Bat Research in Lower Austria.

Elisabeth L. Clifford

Elisabeth L. Clifford is currently a PhD student at the University of Vienna. Her research focuses on the bioavailability and importance of taurine, an amino-acid like compound, as a substrate for heterotrophic prokaryotes throughout the water column in contrasting marine environments (open water versus coasts). In general, her research interests encompass marine molecular and microbial ecology, biogeochemical fluxes as well as chemical communication signaling and interactions in marine food webs.

Michael Schagerl

Michael Schagerl is Professor at the University of Vienna; research fields are phycology and aquatic ecology. Special interests are ecophysiology, autecology and taxonomy of algae living in diverse habitats from springs to the sea and their role in food webs. In recent years, his research group has focused on saline-alkaline lakes and their biota.

Received: 2016-07-08

Accepted: 2017-02-03

Published Online: 2017-03-15

Published in Print: 2017-04-24

Citation Information: Botanica Marina, ISSN (Online) 1437-4323, ISSN (Print) 0006-8055, DOI: https://doi.org/10.1515/bot-2016-0069.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

David Iluz, Simona Fermani, Michal Ramot, Michela Reggi, Erik Caroselli, Fiorella Prada, Zvy Dubinsky, Stefano Goffredo, and Giuseppe Falini
ACS Earth and Space Chemistry, 2017, Volume 1, Number 6, Page 316

Comments (0)

Please log in or register to comment.
Log in