Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Botanica Marina

Editor-in-Chief: Dring, Matthew J.


IMPACT FACTOR 2018: 0.919
5-year IMPACT FACTOR: 1.336

CiteScore 2018: 1.22

SCImago Journal Rank (SJR) 2018: 0.399
Source Normalized Impact per Paper (SNIP) 2018: 0.672

Online
ISSN
1437-4323
See all formats and pricing
More options …
Volume 60, Issue 4

Issues

Effects of environmental parameters on chytrid infection prevalence of four marine diatoms: a laboratory case study

Bettina Scholz
  • Corresponding author
  • BioPol ehf., Einbúastig 2, 545 Skagaströnd, Iceland
  • Faculty of Natural Resource Sciences, University of Akureyri, Borgir v. Nordurslod, IS 600 Akureyri, Iceland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wim Vyverman
  • Department of Biology, Section of Protistology and Aquatic Ecology, University of Ghent, Krijgslaan 281 S8, 9000 Ghent, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Frithjof C. Küpper / Halldór G. Ólafsson / Ulf Karsten
  • Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Strasse 3, 18059 Rostock, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-06-20 | DOI: https://doi.org/10.1515/bot-2016-0105

Abstract

The influence of environmental factors on the infection susceptibility of four different marine diatom host species to chytrid infection was tested under laboratory conditions, using host and parasite isolates obtained from diverse coastal areas in north-west Iceland in 2015. Specifically, a total of 120 monoclonal marine diatom host cultures of Navicula, Nitzschia, Rhizosolenia and Chaetoceros were exposed to their chytrid parasites Chytridium type I and Rhizophydium type I and II in Hellendahl glass staining jars which were subdivided in two compartments by nylon filters (mesh size 5 μm). Infection densities were assessed at different temperatures (5, 15, 20°C), salinities (0, 5, 10, 20, 40), photon fluence rates (PFR; 10, 50, 100, 200 μmol photons m−2 s−1) and photoperiods (24 h dark, 8:16 h, 16:8 h light:dark and 24 h light) after 168 h exposure, using the one-factor-at-a-time method. In addition, growth rates and proline concentrations of the non-infected monoclonal host cultures were determined. In most cases, decreasing growth rates during the acclimatisation process to abiotic stressors were directly related to increases of proline in the host cells. Significant positive associations of infection densities to cell based proline concentrations were predominantly observed in the high-PFR assays and 24-h daylight treatments. At least for half of the tested host-parasite pairs, positive correlations of proline and parasite prevalence were found. In addition, chytrid abundance was also positively correlated with host densities of Navicula sp., Rhizosolenia sp. and Chaetoceros sp. Only in Nitzschia sp., was parasite density negatively associated with proline and showed no significant relationship to host densities, suggesting that other physiological/biochemical factors related to stress might have an impact on the susceptibility of this peculiar host diatom species.

Keywords: chytrids; marine diatoms; parasite-host dual cultures; proline concentrations; stress physiology

References

  • Anderson, R.M. and R.M. May. 1979. Population biology of infectious diseases I. Nature 180: 361–367.Google Scholar

  • Aspinall, D. and L.G. Paleg. 1981. Proline accumulation: physiological aspects. In: (D. Aspinall and L.G. Paleg, eds) Physiology and biochemistry of drought resistance in plants. Academic Press, Sydney. pp. 206–241.Google Scholar

  • Bates, L.S., R.P. Waldren and I.D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39: 205–207.CrossrefGoogle Scholar

  • Bisson, M.A. and G.O. Kirst. 1995. Osmotic acclimation and turgor pressure regulation in algae. Naturwissenschaften 82: 461–471.Google Scholar

  • Bolker, B.M., M.E. Brooks, C.J. Clark, S.W. Geange, J.R. Poulsen, M.H.H. Stevens and J.-S.S. White. 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24: 127–135.Google Scholar

  • Bruning, K. 1991a. Infection of the diatom Asterionella by a chytrid. 1. Effects of light on reproduction and infectivity of the parasite. J. Plank. Res. 13: 103–117.Google Scholar

  • Bruning, K. 1991b. Infection of the diatom Asterionella by a chytrid. 2. Effects of light on survival and epidemic development of the parasite. J. Plank. Res. 13: 119–129.Google Scholar

  • Bruning, K. and J. Ringelberg. 1987. The influence of phosphorus limitation of the diatom Asterionella formosa on the zoospore production of its fungal parasite Rhizophydium planktonicum. Hydrobiol. Bull. 21: 49 –54.Google Scholar

  • Canter, H.M. 1951. Studies on British chytrids. XII. Fungal parasites of the phytoplankton 2. Ann. Bot. 15: 129–156.Google Scholar

  • Canter, H.M. and G.H.M. Jaworski. 1981. The effect of light and darkness upon infection of Asterionella-formosa Hassall by the chytrid Rhizophydium-planktonicum Canter emend. Ann. Bot. 47: 13–30.CrossrefGoogle Scholar

  • Canter, H.M. and G.H.M. Jaworski. 1986. A study on the chytrid Zygorhizidium-planktonicum Canter, a parasite of the diatoms Asterionella and Synedra. Nova Hedwigia 43: 269–298.Google Scholar

  • Carney, L.T. and T.W. Lane. 2014. Parasites in algae mass culture. FMICB. 5: 278.CrossrefGoogle Scholar

  • Delauney, A.J. and D.P.S. Verma. 1993. Proline biosynthesis and osmoregulation in plants. Plant J. 4: 215–223.CrossrefGoogle Scholar

  • De Vargas, C., S. Audic, N. Henry, J. Decelle, F. Mahé, R. Logares, E. Lara, C. Berney, N. Le Bescot, I. Probert, M. Carmichael, J. Poulain, S. Romac, S. Colin, J.M. Aury, L. Bittner, S. Chaffron, M. Dunthorn, S. Engelen, O. Flegontova, L. Guidi, A. Horák, O. Jaillon, G. Lima-Mendez, J. Lukeš, S. Malviya, R. Morard, M. Mulot, E. Scalco, R. Siano, F. Vincent, A. Zingone, C. Dimier, M. Picheral, S. Searson, S. Kandels-Lewis; Tara Oceans Coordinators, S.G. Acinas, P. Bork, C. Bowler, G. Gorsky, N. Grimsley, P. Hingamp, D. Iudicone, F. Not, H. Ogata, S. Pesant, J. Raes, M.E. Sieracki, S. Speich, L. Stemmann, S. Sunagawa, J. Weissenbach, P. Wincker and E. Karsenti. 2015. Eukaryotic plankton diversity in the sunlit global ocean. Science 348: 1261605.Google Scholar

  • Elbrächter, M. and E. Schnepf. 1998. Parasites of harmful algae. In: (D.M. Anderson, A.D. Cembella and G.M. Hallegraeff, eds). Physiological Ecology of Harmful Algal Blooms. Springer-Verlag, Berlin, Germany. pp. 351–363.Google Scholar

  • Erdmann, N. and M. Hagemann. 2001. Salt acclimation of algae and cyanobacteria: a comparison. In: (Rai, L.C. and J.P. Gaur, eds) Algal Adaptation to Environmental Stresses. Springer-Verlag, Heidelberg, Germany. pp. 323–397.Google Scholar

  • Fujii, S., N. Nishimoto, N. Notoya and J.A. Hellebust. 1995. Growth and osmoregulation of Chaetoceros muelleri in relation to salinity. Plant Cell Physiol. 36: 759–764.CrossrefGoogle Scholar

  • Gleason, F.H., F.C. Küpper, J.P. Amon, K. Picard, C.M.M. Gachon, A.V. Marano, T. Sime-Ngando and O. Lilje. 2011. Zoosporic true fungi in marine eosystems: a review. Mar. Fresh. Res. 62: 383–393.Google Scholar

  • Gsell, A.S., L.N. De Senerpont Domis, A. Przytulska-Bartosiewicz, W.M. Mooij, E. van Donk and B.W. Ibelings. 2012. Genotype-by-temperature interactions may help to maintain clonal diversity in Asterionella formosa (Bacillariophyceae). J. Phycol. 48: 1197–1208.CrossrefGoogle Scholar

  • Guillard, R.R.L. and J.H. Ryther. 1962. Studies of marine diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Gran. Can. J. Microbiol. 8: 229–239.Google Scholar

  • Hanic, L.A., S. Sekimoto and S.S. Bates. 2009. Oomycete and chytrid infections of the marine diatom Pseudo-nitzchia pungens (Bacillariophyceae) from Prince Edward Island. Can. Bot. 87: 1096–1105.CrossrefGoogle Scholar

  • Hassett, B.T. and R. Gradinger. 2016. Chytrids dominate arctic marine fungal communities. Environ. Microbiol. 18: 2001–2009.CrossrefGoogle Scholar

  • Hassett, B.T, A.-L.L. Ducluzeau, R.E. Collins and R. Gradinger. 2016. Spatial distribution of aquatic marine fungi across the western Arctic and sub-Arctic. Environ. Microbiol. 19: 475–484.CrossrefGoogle Scholar

  • Holfeld, H. 2000. Infection of the single-celled diatom Stephanodiscus alpinus by the chytrid Zygorhizidium: Parasite distribution within host population, changes in host cell size, and host-parasite size relationship. Limnol. Oceanogr. 45: 1440–1444.Google Scholar

  • Holm, S. 1979. A simple sequentially rejective multiple test procedure. Scand. J. Stat.6: 65–70.Google Scholar

  • Ibelings, B.W., A. De Bruin, M. Kagami, M. Rijkeboer, M. Brehm and E. Van Donk. 2004. Host parasite interactions between freshwater phytoplankton and chytrid fungi (Chytridiomycota). J. Phycol. 40: 437–453.CrossrefGoogle Scholar

  • Ibelings, B.W., A.S. Gsell, W.M. Mooij, E. Van Donk, S. Van den Wyngaert and L.N. de Senerpont Domis. 2011. Chytrid infections of diatom spring blooms: paradoxical effects of climate warming on epidemics in lakes. Freshw. Biol. 56: 754–766.Google Scholar

  • Jackson A.E., S.W. Ayer and M.V. Laycock. 1992. The effect of salinity on growth and amino acid composition in the marine diatom Nitzschia pungens. Can. J. Bot. 70: 2198–2201.Google Scholar

  • James, T.Y., F. Kauff, C.L. Schoch, P.B. Matheny, V. Hofstetter, C.J. Cox, G. Celio, C. Gueidan, E. Fraker, J. Miadlikowska, H.T. Lumbsch, A. Rauhut, V. Reeb, A.E. Arnold, A. Amtoft, J.E. Stajich, K. Hosaka, G.H. Sung, D. Johnson, B. O’Rourke, M. Crockett, M. Binder, J.M. Curtis, J.C. Slot, Z. Wang, A.W. Wilson, A. Schüssler, J.E. Longcore, K. O’Donnell, S. Mozley-Standridge, D. Porter, P.M. Letcher, M.J. Powell, J.W. Taylor, M.M. White, G.W. Griffith, D.R. Davies, R.A. Humber, J.B. Morton, J. Sugiyama, A.Y. Rossman, J.D. Rogers, D.H. Pfister, D. Hewitt, K. Hansen, S. Hambleton, R.A. Shoemaker, J. Kohlmeyer, B. Volkmann-Kohlmeyer, R.A. Spotts, M. Serdani, P.W. Crous, K.W. Hughes, K. Matsuura, E. Langer, G. Langer, W.A. Untereiner, R. Lücking, B. Büdel, D.M. Geiser, A. Aptroot, P. Diederich, I. Schmitt, M. Schultz, R. Yahr, D.S. Hibbett, F. Lutzoni, D.J. McLaughlin, J.W. Spatafora and R. Vilgalys. 2006. Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443: 818–822.Google Scholar

  • Kagami, M., E. Donk, A. Bruin, M. Rijkeboer and B.W. Ibelings. 2004. Daphnia can protect diatoms from fungal parasitism. Limnol. Oceanogr. 49: 680–685.Google Scholar

  • Kagami, M., A. de Bruin, B.W. Ibelings, and E. van Donk. 2007. Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578: 113–129.Google Scholar

  • Karsten, U. 2012. Seaweed acclimation to salinity and desiccation stress. In: (Wiencke C. and K. Bischof, eds) Seaweed Ecophysiology and Ecology, Ecological Studies 219, Springer, Berlin Germany. pp. 87–107.Google Scholar

  • Kirst, G.O. and C. Wiencke. 1995. Ecophysiology of polar algae. J. Phycol. 31: 181–199.CrossrefGoogle Scholar

  • Krell, A. 2006. Salt stress tolerance in the psychrophilic diatom Fragilariopsis cylindrus. Ph.D. Thesis, University of Bremen, Germany. pp. 124.Google Scholar

  • Krell, A., D. Funck, I. Plettner, U. John and G. Dieckmann. 2007. Regulation of proline metabolism under salt stress in the psychrophilic diatom Fragilariopsis cylindrus (Bacillariophyceae). J. Phycol. 43: 753–762.CrossrefGoogle Scholar

  • Massana, R. and C. Pedrós-Alió. 2008. Unveiling new microbial eukaryotes in the surface ocean. Curr. Opin. Microbiol. 11: 213–218.CrossrefGoogle Scholar

  • Massana, R., A. Gobet, S. Audic, D. Bass, L. Bittner, C. Boutte, A. Chambouvet, R. Christen, J.M. Claverie, J. Decelle, J.R. Dolan, M. Dunthorn, B. Edvardsen, I. Forn, D. Forster, L. Guillou, O. Jaillon, W.H. Kooistra, R. Logares, F. Mahé, F. Not, H. Ogata, J. Pawlowski, M. Pernice, I. Probert, S. Romac, T. Richards, S. Santini, K. Shalchian-Tabrizi, R. Siano, N. Simon, T. Stoeck, D. Vaulot, A. Zingone and C. de Vargas. 2015. Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environ. Microbiol. 17: 4035–40490.CrossrefGoogle Scholar

  • Nothnagel, J. 1995. The effects of salinity and light intensity on the osmolyte concentrations, cell volumes and growth rates of the Antarctic sea-ice diatoms Chaetoceros sp. and Navicula sp. with emphasis on the amino acid proline. PhD thesis, University of Bremen, Germany. pp. 115.Google Scholar

  • Paul, C., M.A. Mausz and G. Pohnert. 2013. A co-culturing/metabolomics approach to investigate chemically mediated interactions of planktonic organisms reveals influence of bacteria on diatom metabolism. Metabolomics 9: 349–359.CrossrefGoogle Scholar

  • Plettner, I. 2002. Stressphysiologie bei antarktischen Diatomeen – Ökophysiologische Untersuchungen zur Bedeutung von Prolin bei der Anpassung an hohe Salinitäten und tiefe Temperaturen. PhD thesis, University of Bremen, Germany. pp. 242.Google Scholar

  • R Core Team. 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

  • Richards, T.A., G. Leonard, F. Mahé, J. del Campo, S. Romac, M.D. Jones, F. Maguire, M. Dunthorn, C. De Vargas, R. Massana and A. Chambouvet. 2015. Molecular diversity and distribution of marine fungi across 130 European environmental samples. Proc. R. Soc. B 282: 20152243.Google Scholar

  • Sarkar, D. 2008. Lattice: Multivariate Data Visualization with R. Springer-Verlag, New York, USA. URL http://lmdvr.r-forge.r-project.org/.

  • Scholz, B. 2015. Host-pathogen interactions between brackish and marine microphytobenthic diatom taxa and representatives of the Chytridiomycota, Oomycota and Labyrinthulomycota. Status report for the Icelandic Research Fund from May to June 2014. DOI: 10.13140/RG.2.1.4769.6087.Google Scholar

  • Scholz, B. and H. Einarsson. 2015. Microphytobenthic community composition of two sub-Arctic intertidal flats in Huna Bay (Northern Iceland). Eur. J. Phycol. 50: 182–206.CrossrefGoogle Scholar

  • Scholz, B. and G. Liebezeit. 2012. Compatible solutes in three marine intertidal microphytobenthic Wadden sea diatoms exposed to different salinities. Eur. J. Phycol. 47: 393–407.CrossrefGoogle Scholar

  • Scholz, B. and G. Liebezeit. 2013. Compatible solutes and fatty acid compositions of five marine intertidal microphytobenthic Wadden sea diatoms exposed to different temperatures (southern North Sea). Diatom Res. 28: 337–358.CrossrefGoogle Scholar

  • Scholz, B., F.C. Küpper, W. Vyverman and U. Karsten. 2014a. Eukaryotic pathogens (Chytridiomycota and Oomycota) infecting marine microphytobenthic diatoms – a methodological comparison. J. Phycol. 50: 1009–1019.CrossrefGoogle Scholar

  • Scholz, B., A. Rúa and G. Liebezeit. 2014b. Effects of UV radiation on five marine microphytobenthic Wadden sea diatoms, isolated from the Solthörn tidal flat (Lower Saxony, southern North Sea) – Part II: carbohydrate, amino- and fatty acid compositions. Eur. J. Phycol. 49: 97–114.CrossrefGoogle Scholar

  • Scholz, B., L. Guillou, A.V. Marano, S. Neuhauser, B.K. Sullivan, U. Karsten, F.C. Küpper and F.H. Gleason. 2016a. Zoosporic parasites infecting marine diatoms - A black box that needs to be opened. Fung. Ecol. 19: 59–76.Google Scholar

  • Scholz, B., F.C. Küpper, W. Vyverman and U. Karsten. 2016b. Effects of eukaryotic pathogens (Chytridiomycota and Oomycota) on marine microphytobenthic diatom community compositions in the Solthörn tidal flat (southern North Sea, Germany). Eur. J. Phycol. 5: 253–269.CrossrefGoogle Scholar

  • Scholz, B., F.C. Küpper, W. Vyverman, H.G. Ólafsson and U. Karsten. 2017. Chytridiomycosis of marine diatoms - The potential role of chemotactic triggers and defense molecules in parasite-host interactions. Mar. Drugs 15: 26.Google Scholar

  • Sime-Ngando, T. 2012. Phytoplankton chytridiomycosis: fungal parasites of phytoplankton and their imprints on the food web dynamics. Frontiers Microbiol. 3: 361.Google Scholar

  • Sparrow, F.K. 1960. Aquatic Phycomycetes. University of Michigan Press, Michigan.Google Scholar

  • Van den Wyngaert, S., O. Vanholsbeeck, P. Spaak and B.W. Ibelings. 2014. Parasite fitness traits under environmental variation: disentangling the roles of a chytrid’s immediate host and external environment. Microbial Ecol. 68: 645–656.CrossrefGoogle Scholar

  • Van Donk, E. 1989. The role of fungal parasites in phytoplankton succession. In: (U. Sommer, ed) Plankton ecology. Springer, Berlin, Germany. pp. 171–194.Google Scholar

  • Van Donk, E. and K. Bruning. 1992. Ecology of aquatic fungi in and on algae. In: (W. Reiser, ed) Algae and Symbioses. Plant, Animals, Fungi, Viruses Interactions Explored, Biopress, UK. pp. 567–592.Google Scholar

  • Van Donk, E. and J. Ringelberg. 1983. The effect of fungal parasitism on the succession of diatoms in Lake Maarsseveen I (The Netherlands). Freshwater Biol. 13: 241–251.CrossrefGoogle Scholar

  • Van Donk, E., S. Peacor, K. Grosser, L. De Senerpont Domis and M. Lurling. 2016. Pharmaceuticals may disrupt the natural chemical information flows and species interactions in aquatic systems: ideas and perspectives on a hidden global change. In: (Pim de Voogt, ed) Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews, vol. 238, Springer, Berlin, Heidelberg. pp. 91–105. doi:10.1007/398_2015_5002.CrossrefGoogle Scholar

  • Voigt, K., A.V. Marano and F.H. Gleason. 2013. Chapter 9. Ecological and economical importance of parasitic zoosporic true fungi. In: (F. Kempken, ed) Agricultural Applications, 2nd edition. The Mycota XI. Springer-Verlag Berlin Heidelberg. pp. 243–270.Google Scholar

About the article

Bettina Scholz

Bettina Scholz has been a postdoctoral researcher and project manager at BioPol ehf since 2012 and currently holds the position of an Adjunct Research Professor at the University of Akureyri, Iceland. Her research has focused on algae under varying aspects since 1996. In her thesis, conducted at the Carl von Ossietzky University Oldenburg, Germany, she highlighted the physiological acclimatisation potential of microphytobenthic Wadden Sea diatoms to environmental conditions and their influence on community compositions. Her current research interests comprise the physiology, biochemistry and biodiversity of planktonic and microphytobenthic microalgae (in sensu stricto: Bacillariophyceae or diatoms) in sub-Arctic and Arctic marine environments, especially in the context of defense and stress.

Wim Vyverman

Wim Vyverman has headed the Laboratory of Protistology and Aquatic Ecology, Ghent University since 1996 and is director of the BCCM/DCG culture collection (http://bccm.belspo.be/about-us/bccm-dcg). His research focuses on the biology, biodiversity, ecology and evolution of eukaryote microbes, in particular diatoms. He has worked extensively on tropical and high-latitude lakes as well as in temperate coastal ecosystems. In recent years, he has been using omic approaches to understand the nature of interactions between micro-organisms and their ecological and evolutionary importance in natural environments and algae production systems.

Frithjof C. Küpper

Frithjof C. Küpper has held the Chair in Marine Biodiversity at the University of Aberdeen (Oceanlab) since 2011. Over the past 26 years, he has studied the biodiversity and biochemistry of marine plants/algae – especially abiotic and biotic stress including algal pathologies. He conducted graduate studies at Roscoff and Konstanz for a joint French-German PhD. His research resulted in the finding of iodide serving as an inorganic antioxidant in kelp, the first described from a living system, impacting atmospheric and marine chemistry. As a certified scientific diver, Frithjof has worked extensively in the South Atlantic (Ascension and Falkland Islands), as well as in the Antarctic Peninsula and the Canadian Arctic for algal diversity-related projects.

Halldór G. Ólafsson

Halldór G. Ólafsson has been the Managing Director at BioPol ehf since 2007. He has a degree in Fisheries and worked as a manager in both the Icelandic and Norwegian fish industry. He has participated actively in various marine research projects conducted at BioPol ehf in recent years.

Ulf Karsten

Ulf Karsten has held the Chair in Applied Ecology at the Institute of Biological Sciences, University of Rostock, Germany since 2000. His research expertise comprises the ecology, physiology, biochemistry and molecular biology of marine and terrestrial algae and cyanobacteria.


Received: 2016-09-23

Accepted: 2017-05-16

Published Online: 2017-06-20

Published in Print: 2017-07-26


Citation Information: Botanica Marina, Volume 60, Issue 4, Pages 419–431, ISSN (Online) 1437-4323, ISSN (Print) 0006-8055, DOI: https://doi.org/10.1515/bot-2016-0105.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
E. B. Gareth Jones, Ka-Lai Pang, Mohamed A. Abdel-Wahab, Bettina Scholz, Kevin D. Hyde, Teun Boekhout, Rainer Ebel, Mostafa E. Rateb, Linda Henderson, Jariya Sakayaroj, Satinee Suetrong, Monika C. Dayarathne, Vinit Kumar, Seshagiri Raghukumar, K. R. Sridhar, Ali H. A. Bahkali, Frank H. Gleason, and Chada Norphanphoun
Fungal Diversity, 2019, Volume 96, Number 1, Page 347
[2]
Bettina Scholz, Frithjof Küpper, Wim Vyverman, Halldór Ólafsson, and Ulf Karsten
Marine Drugs, 2017, Volume 15, Number 12, Page 26

Comments (0)

Please log in or register to comment.
Log in