Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Botanica Marina

Editor-in-Chief: Dring, Matthew J.

6 Issues per year

IMPACT FACTOR 2017: 0.989
5-year IMPACT FACTOR: 1.204

CiteScore 2017: 1.00

SCImago Journal Rank (SJR) 2017: 0.297
Source Normalized Impact per Paper (SNIP) 2017: 0.454

See all formats and pricing
More options …
Volume 60, Issue 6


Interactions between kelp spores and encrusting and articulated corallines: recruitment challenges for Lessonia spicata

Gloria M. Parada / Enrique A. Martínez
  • Corresponding author
  • Centro de Estudios Avanzados en Zonas Áridas, Facultad de Ciencias del Mar, Universidad Católica del Norte, Ossandón 877, Coquimbo, Chile
  • Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Moisés A. Aguilera
  • Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mauricio H. Oróstica / Bernardo R. Broitman
  • Centro de Estudios Avanzados en Zonas Áridas, Facultad de Ciencias del Mar, Universidad Católica del Norte, Ossandón 877, Coquimbo, Chile
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-10-06 | DOI: https://doi.org/10.1515/bot-2017-0010


Intertidal kelps like Lessonia spicata (Laminariales) dominate low intertidal habitats, where they coexist with morphologically diverse coralline seaweeds. We show that crustose and articulated coralline algae have contrasting effects on the settlement and recruitment of this kelp species. Crustose coralline algae significantly inhibited the settlement of kelp spores, while they readily settled on the genicula of articulated coralline algae. This pattern was observed both in laboratory experiments and in field experiments conducted in the low intertidal zone at three locations. Field surveys confirmed that L. spicata juveniles were significantly more likely to be found on articulated corallines than on crustose corallines. This pattern held in field surveys at 10 sites, where primary space occupancy of L. spicata showed a significant negative correlation with the cover of crustose coralline algae in 3 out of 4 years, across all sites. Our results provide an important ecological clue to the processes determining recruitment limitation for ecologically and economically important seaweeds, and support conservation and management actions.

Keywords: facilitation; intertidal kelps; seaweed interactions; spore settlement


  • Aguilera, M.A., N. Valdivia and B.R. Broitman. 2015. Herbivore-alga interaction strength influences spatial heterogeneity in a kelp dominated intertidal community. PLoS One 10: e0137287.CrossrefWeb of ScienceGoogle Scholar

  • Akioka, H., M. Baba, T. Masaki and W. Johansen. 1999. Rocky shores turfs dominated by Corallina (Corallinales, Rodophyta) in northern Japan. Phycol. Res. 47: 199–206.Google Scholar

  • Barner, A., S.D. Hacker, B.A. Mengel and K. J. Mielsen. 2016. The complex net effect of reciprocal interactions and recruitment facilitation maintains an intertidal kelp community. J. Ecol. 104: 33–43.Web of ScienceCrossrefGoogle Scholar

  • Brisson, L.F., R. Tenhaken and C. Lamb. 1994. Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance. Plant Cell 6: 1703–1712.CrossrefGoogle Scholar

  • Broitman, B.R., S.A. Navarrete, F. Smith and S.D. Gaines. 2001. Geographic variation of Southeastern Pacific intertidal communities. Mar. Ecol. Prog. Ser. 224: 21–34.CrossrefGoogle Scholar

  • Broitman, B.R., F. Veliz, T. Manzur, E.A. Wieters, G.R. Finke, N. Valdivia, P. Fornes and S.A. Navarrete. 2011. Geographic variation in diversity of wave exposed rocky intertidal communities along central Chile. Rev. Chil. Hist. Nat. 84: 143–154.Web of ScienceCrossrefGoogle Scholar

  • Buschmann, A.H. 1990. The role of herbivory and desiccation on early successional patterns of intertidal macroalgae in southern Chile. J. Exp. Mar. Biol. Ecol. 139: 221–230.CrossrefGoogle Scholar

  • Camus, P.A. 1994. Recruitment of the intertidal kelp Lessonia nigrescens Bory in northern Chile: successional constraints and opportunities. J. Exp. Mar. Biol. Ecol. 184: 171–181.CrossrefGoogle Scholar

  • Camus, P.A. 2008. Understanding biological impacts of ENSO on the eastern Pacific: an evolving scenario. Int. J. Environ. Health 2: 5–19.CrossrefGoogle Scholar

  • Coull, B.C. and J.B.J. Wells. 1983. Refuges from fish predation: Experimental with phytal meiofauna fron the New Zealand rocky intertidal. Ecology 64: 1599–1609.CrossrefGoogle Scholar

  • Figueiredo, M.A. de O., J.M. Kain (Jones) and T.A. Norton. 2000. Responses of crustose corallines to epiphyte and canopy cover. J. Phycol. 36: 17–24.CrossrefGoogle Scholar

  • Filbee-Dexter, K. and R.E. Scheibling. 2014. Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Mar. Ecol. Progr. Ser. 495: 1–25.CrossrefGoogle Scholar

  • Franco, J.N., T. Wernberg, I. Bertocci, P. Duarte, D. Jacinto, N. Vasco-Rodrigues and F. Tuya. 2015. Herbivory drives kelp recruits into ‘hiding’ in a warm ocean climate. Mar. Ecol. Progr. Ser. 536: 1–9.CrossrefGoogle Scholar

  • Gaylord, B., D.C. Reed, L. Washburn and P.T. Raimondi. 2004. Physical-biological coupling in spore dispersal of kelp forest macroalgae. J. Marine Syst. 49: 19–39.CrossrefGoogle Scholar

  • Gaylord, B., D.C. Reed, P.T. Raimondi and L. Washburn. 2006. Macroalgal spore dispersal in coastal environments: Mechanistic insights revealed by theory and experiment. Ecolo. Monogr. 76: 481–502.CrossrefGoogle Scholar

  • Hay, M.E. 1986. Associational plant defenses and the maintenance of species diversity: turning competitors into accomplices. Amer. Nat. 128: 617–641.CrossrefGoogle Scholar

  • Hicks, G.R.F. 1986. Meiofauna associated with rocky shore algae. In: (P.G. Moore and R. Seed, eds) The Ecology of Rocky Coasts. Columbia University Press, New York. pp. 36–56.Google Scholar

  • Irving, A.D., S.D. Connell and T.S. Elsdon. 2004. Effects on kelp canopies on bleaching and photosynthetic activity of encrusting coralline algae. J. Exp. Mar. Biol. Ecol. 310: 1–12.CrossrefGoogle Scholar

  • Keats, D.W., A. Groener and Y.M. Chamberlain. 1993. Cell sloughing in the littoral zone coralline alga, Spongites yendoi (Foslie) Chamberlain (Corallinales, Rhodophyta). Phycologia 32: 143–150.CrossrefGoogle Scholar

  • Kim, M.J., J.S. Choi, S.E. Kang, J.Y. Cho, H.J. Jin, B.S. Chun and Y.K. Hong. 2004. Multiple allelopathic activity of the crustose coralline alga Lythophyllum yessoense against settlement and germination of seaweed spores. J. Appl. Phycol. 16: 175–179.CrossrefGoogle Scholar

  • Küpper, F.C., B. Kloareg, J. Guern and F. Potin. 2001. Oligoguluronates elicit an oxidative burst in the brown algal kelp Laminaria digitata. Plant Physiol. 125: 278–291.CrossrefGoogle Scholar

  • Ling, S.D., R.E. Scheibling, A. Rassweiler, C.R. Johnson, N. Shears, S.D. Connell, A.K. Salomon, K.M. Norderhaug, A. Pérez-Matus, J.C. Hernández, S. Clemente, L.K. Blamey, B. Hereu, E. Ballesteros, E. Sala, J. Garrabou, E. Cebrian, M. Zabala, D. Fujita and L.E. Johnson. 2015. Global regime shift dynamics of catastrophic sea urchin overgrazing. Phil. Trans. R. Soc. B 370: 20130269.Google Scholar

  • Martínez, E.A. 1999. Latitudinal differences in thermal tolerance among microscopic sporophytes of the kelp Lessonia nigrescens (Phaeophyta, Laminariales). Pacific Science 53: 74–81.Google Scholar

  • Martínez, E. and J.A. Correa. 1993. Sorus-specific epiphytism affecting the kelps Lessonia nigrescens and L. trabeculata (Phaeophyta). Mar. Ecol. Prog. Ser. 96: 83–92.CrossrefGoogle Scholar

  • Martínez, E.A. and B. Santelices. 1998. Selective mortality on haploid and diploid microscopic stages of Lessonia nigrescens Bory (Phaeophyta, Laminariales). J. Exp. Mar. Biol. Ecol. 229: 219–239.CrossrefGoogle Scholar

  • Martínez, E.A., L. Cárdenas and R. Pinto. 2003. Recovery and genetic diversity of the intertidal kelp Lessonia nigrescens (Phaeophyceae) 20 years after El Niño 1982/83. J. Phycol. 39: 504–508.CrossrefGoogle Scholar

  • Masaki, T., D. Fujita and H. Akioka. 1981. Observation on the spore germination of Laminaria japonica on Lithophyllum yessoense (Rhodophyta, Corallinaceae) in culture. Bull. Fac. Fish. Hokk. Univ. 32: 349–356.Google Scholar

  • Masaki, T., D. Fujita and N.T. Hagen. 1984. The surface ultrastructure and epithallium shedding of crustose coralline algae in an “isoyake” area of south-western Hokkaido, Japan. Hydrobiologia 116/117: 218–233.CrossrefGoogle Scholar

  • Melville, A.J. and S.D. Connell. 2001. Experimental effects of kelp canopies on subtidal coralline algae. Austral Ecol. 26: 102–108.Google Scholar

  • Milligan, K.L.D. and R.E. DeWreede. 2000. Variations in holdfast attachments mechanics with developmental stage, substratum type, season, and wave exposure for the intertidal kelp species Hedophyllum sessile (C. Agardh) Setchell. J. Exp. Mar. Biol. Ecol. 254: 189–209.CrossrefGoogle Scholar

  • Okazaki, M., K. Furuja, K. Tsukayama and K. Nisizawa. 1982. Isolation and identification of alginic acid from a calcareous red alga Serraticardia maxima. Bot. Mar. 25: 123–131.Google Scholar

  • Oróstica, M.H., M.A. Aguilera, G.A. Donoso, J.A. Vásquez and B.R. Broitman. 2014. Effect of grazing on distribution and recovery of harvested stands of Lessonia berteroana kelp in northern Chile. Mar. Ecol. Prog. Ser. 511: 71–82.Web of ScienceCrossrefGoogle Scholar

  • Otte, O. and W. Barz. 1996. The elicitor-induced oxidative burst in cultivated chickpea cells drives the rapid insolubilization of two cell wall structural proteins. Planta 200: 238–246.Google Scholar

  • Parada, G.M. 2001. Factores inhibitorios y facilitadores en el reclutamiento de Lessonia nigrescens (Bory 1826). Marine Biology degree thesis. Universidad de Valparaíso. Chile.Google Scholar

  • Parada, G.M., F. Tellier and E.A. Martínez. 2016. Spore dispersal in the intertidal kelp Lessonia spicata: Macrochallenges for the harvested Lessonia species complex at microscales of space and time. Bot. Mar. 59: 283–289.Web of ScienceGoogle Scholar

  • Rodríguez, D.C., M.H. Oróstica and J.A. Vásquez. 2014. Coalescence in wild organisms of the intertidal population of Lessonia berteroana in northern Chile: management and sustainability effects. J. Appl. Phycol. 26: 1115–1122.CrossrefWeb of ScienceGoogle Scholar

  • Santelices, B. 1990. Patterns of reproduction, dispersal and recruitment in seaweeds. Oceanog. Mar. Biol. Ann. Rev. 28: 177–276.Google Scholar

  • Santelices, B. and P.F. Ojeda. 1984. Recruitment, growth and survival of Lessonia nigrescens (Phaeophyta) at various tidal levels in exposed habitats of central Chile. Mar. Ecol. Prog. Ser. 19: 73–82.CrossrefGoogle Scholar

  • Steneck, R.S. and M.N. Dethier. 1994. A Functional group approach to the structure of algal-dominated communities. Oikos 69: 476–498.CrossrefGoogle Scholar

  • Suzuki, Y., T. Takabayashi, T. Kawaguchi and K. Matsunaga. 1998. Isolation of an allelopathic substance from the crustose coralline alga, Lithophyllum spp, and its effect on the brown alga Laminaria religiosa Miyabe (Phaeophyta). J. Exp. Mar. Biol. Ecol. 225: 69–77.CrossrefGoogle Scholar

  • Tellier, F., J.M.A. Vega, B.R. Broitman, J.A. Vásquez, M. Valero and S. Faugeron. 2011. The importance of having two species instead of one in kelp management: the Lessonia nigrescens species complex. Cah. Biol. Mar. 52: 455–465.Google Scholar

  • Vásquez, J.A. 2008. Production, use and fate of Chilean brown seaweeds: resources for a sustainable fishery. J. Appl. Phycol. 20: 457–467.CrossrefGoogle Scholar

  • Vásquez, J.A., N. Piaget and J.M.A. Vega. 2012. The Lessonia nigrescens fishery in northern Chile: “how you harvest is more important than how much you harvest”. J. Appl. Phycol. 24: 417–426.Web of ScienceCrossrefGoogle Scholar

  • Vega, J.M.A., B.R. Broitman and J.A. Vásquez. 2014. Monitoring the sustainability of Lessonia nigrescens (Laminariales, Phaeophyceae) in northern Chile under strong harvest pressure. J. Appl. Phycol. 26: 791–801.CrossrefWeb of ScienceGoogle Scholar

About the article

Gloria M. Parada

Gloria M. Parada obtained her degree in marine biology from the Universidad de Valparaíso (Chile) and her Master of Science in management of marine resources from CICIMAR-IPN (La Paz, B.C.S. Mexico). Her research focused on several ecological aspects of the Laminariales and she worked for several years designing investment projects for rural communities and small-scale fishermen of the Chilean coasts. At present, she works for Visión Oceánica Ltd. and CARMAC Foundation, Chile.

Enrique A. Martínez

Enrique A. Martínez, here holding a specimen of Fucus vesiculosus from the Atlantic Ocean of northern France, obtained his PhD from the Pontificia Universidad Católica where he worked on the ecology and evolution of microscopic stages of Chilean kelps. He lives in southern France where he still does some research, searching how to live in a more sustainable society.

Moisés A. Aguilera

Moisés A. Aguilera is a full professor and researcher at the Department of Marine Biology of the Universidad Católica del Norte at Coquimbo, Chile. He obtained his PhD in ecology in 2010 at the Pontificia Universidad Católica de Chile. His research interest includes impacts of coastal urbanization on community structure and functioning and processes related to urban ecology in general. In addition, the main focus of his research has centered on an experimental-based perspective, especially related to alga-herbivore interaction strengths.

Mauricio H. Oróstica

Mauricio H. Oróstica obtained his degree in marine biology from Universidad Católica de la Santísima Concepción-Chile and his MSc degree in marine science from Universidad Católica del Norte-Chile. His interest is focused on intertidal ecology, particularly on the processes, as well as mechanisms, that affect the intertidal landscape at small and large spatial scales. Since 2015, he is a PhD student at the School of Ocean Sciences in Bangor University, UK, funded by the National Commission for Scientific and Technological Research (CONICYT, Chilean government).

Bernardo R. Broitman

Bernardo R. Broitman is a lead researcher at the Centro de Estudios Avanzados en Zonas Aridas (CEAZA) and a PhD in ecology, evolution and marine biology from the University of California, Santa Barbara. His primary scientific interest is understanding the role of biophysical forcing on ecological interactions, using intertidal communities in upwelling regions. His transdisciplinary interest has prompted him to investigate the socio-ecological system around shellfish aquaculture in order to understand the principles underpinning their sustainability.

Received: 2017-02-01

Accepted: 2017-08-28

Published Online: 2017-10-06

Published in Print: 2017-11-27

Citation Information: Botanica Marina, Volume 60, Issue 6, Pages 619–625, ISSN (Online) 1437-4323, ISSN (Print) 0006-8055, DOI: https://doi.org/10.1515/bot-2017-0010.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in