Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Botanica Marina

Editor-in-Chief: Dring, Matthew J.

6 Issues per year

IMPACT FACTOR 2017: 0.989
5-year IMPACT FACTOR: 1.204

CiteScore 2017: 1.00

SCImago Journal Rank (SJR) 2017: 0.297
Source Normalized Impact per Paper (SNIP) 2017: 0.454

See all formats and pricing
More options …
Volume 61, Issue 1


The Chlorophytes of Curaçao (Caribbean): a revised checklist for the south-west coast

Anna Fricke
  • Corresponding author
  • Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstrasse 6, 28359 Bremen, Germany
  • Instituto Argentino de Oceanografía, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional del Sur, Florida 4750, B8000FWB Bahía Blanca, Argentina
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tamara V. Titlyanova
  • A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevskogo 17, Vladivostok, 690041, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mirta Teichberg / Maggy M. Nugues
  • EPHE, PSL Research University, UPVD-CNRS, USR 3278 CRIOBE, F-66860 Perpignan, France
  • Labex Corail, CRIOBE, 98729 Moorea, French Polynesia
  • Carmabi Foundation, Piscaderabaai z/n, PO Box 2090, Willemstad, Curaçao
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kai Bischof
Published Online: 2018-01-23 | DOI: https://doi.org/10.1515/bot-2017-0072


The global trend of unprecedented losses in coral reefs is particularly striking in the Caribbean, where dense algal assemblages are commonly replacing corals. So far, hardly anything is known about the ecology of the dominant algal groups. The present study compiled records of Chlorophytes from nine studies in the shallow reefs of Curaçao in the years preceding the onset of coral reef decline (1908–1978) and compared them with records from three recent (2007–2009) expeditions conducted at the same and nearby study locations along the south-west coast of the island. A total of 107 species were encountered, including seven new records for Curaçao (Anadyomene saldanhae, Bryopsis hypnoides, Chaetomorpha minima, Derbesia fastigiata, Ulva flexuosa subsp. paradoxa, Ulvella scutata and Ulvella lens). Sampled material revealed a higher species number during the dry seasons than during the wet seasons, indicating a seasonal variation in algal growth. Most species grew on hard substratum or were epibiotic, and 13 species were found growing on more than one substratum. Comparisons with earlier studies suggest an extension in depth range for nine species. The present work provides a comprehensive overview of the distribution of Chlorophytes of the island and can serve as an important baseline for further research on coral reef ecosystem changes.

This article offers supplementary material which is provided at the end of the article.

Keywords: Caribbean; coral reef algae; depth distribution; epiphytes; seasonality; settlement substrata


  • Abbott, I.A. and G.J. Hollenberg. 1976. Marine algae of California. Stanford University Press, California. pp. 827.Google Scholar

  • Abbott, I.A. and J.M. Huisman. 2004. Marine Green and Brown Algae of the Hawaiian Islands. Bishop Museum Bulletins in Botany, Honolulu. pp. 259.Google Scholar

  • Aronson, R.B. and W.F. Precht. 2006. Conservation, precaution, and Caribbean reefs. Coral Reefs 25: 441–450.CrossrefGoogle Scholar

  • Ateweberhan, M., J.H. Bruggemann and A.M. Breeman. 2006. Effects of extreme seasonality on community structure and functional group dynamics of coral reef algae in the southern Red Sea (Eritrea). Coral Reefs 25: 391–406.CrossrefGoogle Scholar

  • Bak, R.P.M., G. Nieuwland and E.H. Meesters. 2005. Coral reef crisis in deep and shallow reefs: 30 years of constancy and change in reefs of Curacao and Bonaire. Coral Reefs 24: 475–479.CrossrefGoogle Scholar

  • Bellwood, D.R., A.S. Hoey and T.P. Hughes. 2012. Human activity selectively impacts the ecosystem roles of parrotfishes on coral reefs. Proc. R. Soc. Lond. B Biol. Sci. 279: 1621–1629.CrossrefGoogle Scholar

  • Bernecker, A. and I.S. Wehrtmann. 2009. New records of benthic marine algae and Cyanobacteria for Costa Rica, and a comparison with other Central American countries. Helgol. Mar. Res. 63: 219–229.CrossrefGoogle Scholar

  • Bers, A.V. and M. Wahl. 2004. The influence of natural surface microtopographies on fouling. Biofouling 20: 43–51.CrossrefGoogle Scholar

  • Betancourt, L. and A. Herrera-Moreno. 2001. Algas marinas bentónicas (Rhodophyta, Phaeophyta y Chlorophyta) conocidas para la Hispaniola. Moscos Oa Jardín Botánico Nac. St. Domingo 12: 105–134.Google Scholar

  • Biasutti, M., D.S. Battisti and E.S. Sarachik. 2004. Mechanisms controlling the annual cycle of precipitation in the tropical Atlantic sector in an atmospheric GCM*. J. Clim. 17: 4708–4723.CrossrefGoogle Scholar

  • Callow, M.E., A.R. Jennings, A.B. Brennan, C.E. Seegert, A. Gibson, L. Wilson, A. Feinberg, R. Baney and J.A. Callow. 2002. Microtopographic cues for settlement of zoospores of the green fouling alga Enteromorpha. Biofouling 18: 229–236.CrossrefGoogle Scholar

  • Carton, J.A. and Z. Zhou. 1997. Annual cycle of sea surface temperature in the tropical Atlantic Ocean. J. Geophys. Res. Oceans 102: 27813–27824.CrossrefGoogle Scholar

  • Chao, K.-P., C.-S. Chen, E.I.-C. Wang and Y.-C. Su. 2005. Aquacultural characteristics of Rhizoclonium riparium and an evaluation of its biomass growth potential. J. Appl. Phycol. 17: 67–73.CrossrefGoogle Scholar

  • Collado-Vides, L. and D. Robledo. 1999. Morphology and photosynthesis of Caulerpa (Chlorophyta) in relation to growth form. J. Phycol. 35: 325–330.CrossrefGoogle Scholar

  • Coma, R., I. Llobet, M. Zabala, J.M. Gili and R.G. Hughes. 1992. The population dynamics of Halecium petrosum and Halecium pusillum (Hydrozoa, Cnidaria), epiphytes of Halimeda tuna in the nortwestern Mediterranean. Sci. Mar. 56: 161–169.Google Scholar

  • Dawes, C.J. and A.C. Mathieson. 2008. The seaweeds of Florida. University Press of Florida, Gainesville, Florida. pp. 656.Google Scholar

  • De Bakker, D.M., F.C. van Duyl, R.P.M. Bak, M.M. Nugues, G. Nieuwland and E.H. Meesters. 2017. 40 Years of benthic community change on the Caribbean reefs of Curaçao and Bonaire: the rise of slimy cyanobacterial mats. Coral Reefs 36: 355–367.CrossrefGoogle Scholar

  • De Kock, W.C. and W.J.J.O. De Wilde. 1964. Verslag over het onderzoek naar de fertiliteit van enige Curaqaose binnenbaaien. Publ. Caraibisch Mar. Biol. Inst. Collected Papers 4: 1–14.Google Scholar

  • Díaz-Piferrer, M. 1964. Adiciones a la flora marina de las Antillas holendesas Curazao y Bonaire. Caribb. J. Sci. 4: 513–543.Google Scholar

  • Diaz-Pulido, G., L.J. McCook, S. Dove, R. Berkelmans, G. Roff, D.I. Kline, S. Weeks, R.D. Evans, D.H. Williamson and O. Hoegh-Guldberg. 2009. Doom and boom on a resilient reef: climate change, algal overgrowth and coral recovery. PLoS One 4: e5239.CrossrefGoogle Scholar

  • Drew, EA. 1983. Halimeda biomass, growth rates and sediment generation on reefs in the Central Great Barrier Reef province. Coral Reefs 2: 101–110.CrossrefGoogle Scholar

  • Fernández, C. and J. Cortés. 2005. Caulerpa sertularioides, a green alga spreading aggressively over coral reef communities in Culebra Bay, North Pacific of Costa Rica. Coral Reefs 24: 10.CrossrefGoogle Scholar

  • Ferrari, R., M. Gonzalez-Rivero, J.C. Ortiz and P.J. Mumby. 2012. Interaction of herbivory and seasonality on the dynamics of Caribbean macroalgae. Coral Reefs 31: 683–692.CrossrefGoogle Scholar

  • Field, S.N., D. Glassom and J. Bythell. 2007. Effects of artificial settlement plate materials and methods of deployment on the sessile epibenthic community development in a tropical environment. Coral Reefs 26: 279–289.CrossrefGoogle Scholar

  • Fricke, A., M. Teichberg, S. Beilfuss and K. Bischof. 2011a. Succession patterns in algal turf vegetation on a Caribbean coral reef. Bot. Mar. 54: 111–126.Google Scholar

  • Fricke, A., T.V. Titlyanova, M.M. Nugues and K. Bischof. 2011b. Depth-related variation in epiphytic communities growing on the brown alga Lobophora variegata in a Caribbean coral reef. Coral Reefs 30: 967–973.CrossrefGoogle Scholar

  • Fricke, A., T.V. Titlyanova, M.M. Nugues and K. Bischof. 2013. Neosiphonia howei (Ceramiales: Rhodomelaceae) – a common epiphyte of the spreading coral reef alga Lobophora variegata (Dictyotales: Dictyotaceae). Mar. Biodivers. Rec. 6: E3.CrossrefGoogle Scholar

  • Fricke, A., M. Teichberg, M.M. Nugues, S. Beilfuss and K. Bischof. 2014. Effects of depth and ultraviolet radiation on coral reef turf algae. J. Exp. Mar. Biol. Ecol. 461: 73–84.CrossrefGoogle Scholar

  • Fricke, A., G.A. Kopprio, D. Alemany, M. Gastaldi, M. Narvarte, E.R. Parodi, R.J. Lara, F. Hidalgo, A. Martínez, E.A. Sar, O. Iribarne and P. Martinetto. 2016. Changes in coastal benthic algae succession trajectories and assemblages under contrasting nutrient and grazer loads. Estuaries Coasts 39: 462–477.CrossrefGoogle Scholar

  • Fricke, A., T.C. Kihara and M. Hoppenrath. 2017. Studying mesoalgal structures: a non-destructive approach based on confocal laser scanning microscopy. Bot. Mar. 60: 181–196.Google Scholar

  • Gosch, B.J., R.J. Lawton, N.A. Paul, R. de Nys and M. Magnusson. 2015. Environmental effects on growth and fatty acids in three isolates of Derbesia tenuissima (Bryopsidales, Chlorophyta). Algal Res. 9: 82–93.CrossrefGoogle Scholar

  • Griggs, A.N., G.M. Selckmann, J. Cummins and C. Buchanan. 2015. Methods for estimating filamentous algae cover in streams and rivers of the Shenandoah River Basin. Final Report. U.S. EPA Region 3. pp. 33.Google Scholar

  • Guiry, M.D. and G.M. Guiry. 2017. Algaebase. World-wide electronic publication, National University of Ireland, Galway.Google Scholar

  • Haan, J. den, J. Huisman, H.J. Brocke, H. Goehlich, K.R.W. Latijnhouwers, S. van Heeringen, S.A.S. Honcoop, T.E. Bleyenberg, S. Schouten, C. Cerli, L. Hoitinga, M.J.A. Vermeij and P.M. Visser. 2016. Nitrogen and phosphorus uptake rates of different species from a coral reef community after a nutrient pulse. Sci. Rep. 6: article number 28821.Google Scholar

  • Harlin, M.M. and J.M. Lindbergh. 1977. Selection of substrata by seaweeds: optimal surface relief. Mar. Biol. 40: 33–40.CrossrefGoogle Scholar

  • Hastenrath, S. 1984. Interannual variability and annual cycle: mechanisms of circulation and climate in the tropical Atlantic sector. Monthly Weather Rev. 112: 1097–1107.CrossrefGoogle Scholar

  • Hoek, C. van den. 1969. Algal vegetation-types along the open coasts of Curacao, Netherlands Antilles. Proc. Koninki. Nederl. Akad. Wetens., Ser. C. 72: 537–575.Google Scholar

  • Hoek, C. van den. 1978. Marine algae from the coral reef of Curaçao, Netherlands Antilles. I. Three new and one rarely observed species from the steep fore-reef slope. Aquat. Bot. 5: 47–61.CrossrefGoogle Scholar

  • Hoek, C. van den, F. Colijn, A. Cortel Breemann and J.B.W. Wanders. 1972. Algal vegetation-types along the shores of inner bays and lagoons of Curaçao and of the lagoon Lac (Bonaire), Netherlands Antilles. Verh. Konikl. Nederl. Akad. Wetenschappen Afd. Natuurk. 61: 1–72.Google Scholar

  • Hoek, C. van den, A. Cortel Breemann and J.B.W. Wanders. 1975. Algal zonation in the fringing coral reef of Curaçao, Netherlands Antilles, in relation to zonation of corals and gorgonians. Aquat. Bot. 1: 269–308.CrossrefGoogle Scholar

  • Hoek, C. van den, A. Breemann, R.P.M. Bak and G. Van Buurt. 1978. The distribution of algae, corals and gorgonians in relation to depth, light attenuation, water movement and grazing pressure in the fringing coral reef of Curacao, Netherlands Antilles. Aquat. Bot. 5: 1–46.CrossrefGoogle Scholar

  • Hofmann, L.C., J.C. Nettleton, C.D. Neefus and A.C. Mathieson. 2010. Cryptic diversity of Ulva (Ulvales, Chlorophyta) in the Great Bay Estuarine System (Atlantic USA): introduced and indigenous distromatic species. Eur. J. Phycol. 45: 230–239.CrossrefGoogle Scholar

  • Hughes, T.P., M.J. Rodrigues, D.R. Bellwood, D. Ceccarelli, O. Hoegh-Guldberg, L. McCook, N. Moltschaniwskyj, M.S. Pratchett, R.S. Steneck and B. Willis. 2007. Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr. Biol. CB 17: 360–365.CrossrefGoogle Scholar

  • Jompa, J. and L.J. McCook. 2003. Contrasting effects of turf algae on corals: massive Porites spp. are unaffected by mixed-species turfs, but killed by the red alga Anotrichium tenue. Mar. Ecol. Prog. Ser. 258: 79–86.CrossrefGoogle Scholar

  • Kaspari, M., P.S. Ward and M. Yuan. 2004. Energy gradients and the geographic distribution of local ant diversity. Oecologia 140: 407–413.CrossrefGoogle Scholar

  • Kerswell, A.P. 2006. Global biodiversity patterns of benthic marine algae. Ecology 87: 2479–2488.CrossrefGoogle Scholar

  • Konar, B., K. Iken, J.J. Cruz-Motta, L. Benedetti-Cecchi, A. Knowlton, G. Pohle, P. Miloslavich, M. Edwards, T. Trott, E. Kimani, R. Riosmena-Rodriguez, M. Wong, S. Jenkins, A. Silva, I.S. Pinto and Y. Shirayama. 2010. Current patterns of macroalgal diversity and biomass in northern hemisphere rocky shores. PLoS One 5: e13195.CrossrefGoogle Scholar

  • Lapointe, B.E. and B.J. Bedford. 2010. Ecology and nutrition of invasive Caulerpa brachypus f. parvifolia blooms on coral reefs off southeast Florida, U.S.A. Harmful Algae 9: 1–12.CrossrefGoogle Scholar

  • Lapointe, B.E., P.J. Barile, M.M. Littler and D.S. Littler. 2005. Macroalgal blooms on southeast Florida coral reefs. Harmful Algae 4: 1106–1122.CrossrefGoogle Scholar

  • Lefèvre, C.D. and D.R. Bellwood. 2010. Seasonality and dynamics in coral reef macroalgae: variation in condition and susceptibility to herbivory. Mar. Biol. 157: 955–965.CrossrefGoogle Scholar

  • Littler, D.S. and M.M. Littler. 1991. Systematics of Anadyomene species (Anadyomenaceae, Chlorophyta) in the tropical western Atlantic. J. Phycol. 27: 101–118.CrossrefGoogle Scholar

  • Littler, D.S. and M.M. Littler. 2000. Caribbean Reef Plants. Washington, DC. OffShore Graphics, Inc. pp. 543.Google Scholar

  • Littler, M.M., D.S. Littler and B.L. Brooks. 2010. Marine macroalgal diversity assessment of Saba Bank, Netherlands Antilles. PLoS One 5: e10677.CrossrefGoogle Scholar

  • Mabrouk, L., A. Hamza, M. Mahfoudi and M.-N. Bradai. 2012. Spatial and temporal variations of epiphytic Ostreopsis siamensis on Posidonia oceanica (L.) Delile leaves in Mahdia (Tunisia). Cah. Biol. Mar. 53: 419–427.Google Scholar

  • Martis, A., V. Oldenborgh, G. Jan and G. Burgers. 2002. Predicting rainfall in the Dutch Caribbean – more than El Niño? Int. J. Climatol. 22: 1219–1234.CrossrefGoogle Scholar

  • McGlathery, K.J., R.W. Howarth and R. Marino. 1992. Nutrient limitation of the macroalga Penicillus capitatus. Estuaries 15: 18–25.CrossrefGoogle Scholar

  • Meinesz, A., T. Belsher, T. Thibaut, B. Antolic, K.B. Mustapha, C.F. Boudouresque, D. Chiaverini, F. Cinelli, J.M. Cottalorda, A. Djellouli, A. El Abed, C. Orestano, A.M. Grau, L. Ivesa and A. Zuljevic. 2001. The introduced green alga Caulerpa taxifolia continues to spread in the Mediterranean. Biol. Invasions 3: 201–210.CrossrefGoogle Scholar

  • Mumby, P. 1999. Bleaching and hurricane disturbances to populations of coral recruits in Belize. Mar. Ecol. Prog. Ser. 190: 27–35.CrossrefGoogle Scholar

  • Nugues, M.M. and R.P.M. Bak. 2006. Differential competitive abilities between Caribbean coral species and a brown alga: a year of experiments and a long term perspective. Mar. Ecol. Prog. Ser. 315: 75–86.CrossrefGoogle Scholar

  • Nugues, M.M. and R.P.M. Bak. 2008. Long-term dynamics of the brown macroalga Lobophora variegata on deep reefs in Curaçao. Coral Reefs 27: 389–393.CrossrefGoogle Scholar

  • Nugues, M.M. and A.M. Szmant. 2006. Coral settlement onto Halimeda opuntia: a fatal attraction to an ephemeral substrate? Coral Reefs 25: 585–591.CrossrefGoogle Scholar

  • N’Yeurt, A.D.R. and D.W. Keats. 1997. Rhipilia penicilloides sp. nov. (Udoteaceae, Chlorophyta) from Fiji. Phycologia 36: 172–178.CrossrefGoogle Scholar

  • Pandolfi, J.M., R.H. Bradbury, E. Sala, T.P. Hughes, K.A. Bjorndal, R.G. Cooke, D.McArdle, L. McClenachan, M.J. Newman, G. Paredes, R.R. Warner and J.B.C. Jackson. 2003. Global trajectories of the long-term decline of coral reef ecosystems. Science 301: 955–958.CrossrefGoogle Scholar

  • Rhodes, L.L., K.F. Smith, R. Munday, A.I. Selwood, P.S. McNabb, P.T. Holland and M.-Y. Bottein. 2010. Toxic dinoflagellates (Dinophyceae) from Rarotonga, Cook Islands. Toxicon 56: 751–758.CrossrefGoogle Scholar

  • Santelices, B. 1977. Water movement and seasonal algal growth in Hawaii. Mar. Biol. 43: 225–235.CrossrefGoogle Scholar

  • Schellmann, G., U. Radtke, A. Scheffers, F. Whelan and D. Kelletat. 2004. ESR Dating of Coral Reef Terraces on Curaçao (Netherlands Antilles) with Estimates of Younger Pleistocene Sea Level Elevations. J. Coast. Res. 204: 947–957.CrossrefGoogle Scholar

  • Sluiter, C.P. 1908. List of the algae collected by the fishery-inspection Curaçao. Rec. Trav. Bot. Néerl. IV: 231–241.Google Scholar

  • Steneck, R.S. and J.C. Lang. 2003. Mexico. Rapid assessment of Mexico’s Yucatan reef in 1997 and 1999: pre- and post-1998 mass bleaching and hurricane mitch (Stony Corals, algae and fishes). Atoll Res. Bull. 496: 294–317.CrossrefGoogle Scholar

  • Suárez, A., B. Martínez-Daranas and Y. Alfonso. 2015. Macroalgas marinas de Cuba. La Habana, UH. pp. 264.Google Scholar

  • Taylor, W.R. 1942. Caribbean marine algae of the Allan Hancock Expedition, 1939. In Allan Hancock Atlantic Expedition. The University of Southern Carolina Press, California.Google Scholar

  • Taylor, W.R. 1960. Marine algae of the eastern tropical and subtropical coasts of the Americas. The University of Michigan Press, pp. 870.Google Scholar

  • Teichberg, M., S.E. Fox, Y.S. Olsen, I. Valiella, P. Martinetto, O. Iribarne, E.Y. Muto, M.A.V. Petti, T.N. Corbisier, M.S. Jiménez, F. Páez-Osuna, P. Castro, H. Freitas, A. Zitelli, M. Cardiletti and D. Tagliapietra. 2010. Eutrophication and macroalgal blooms in temperate and tropical coastal waters: nutrient enrichment experiments with Ulva spp. Glob. Change Biol. 16: 2624–2637.Google Scholar

  • Teichberg, M., A. Fricke and K. Bischof. 2013. Increased physiological performance of the calcifying green macroalga Halimeda opuntia in response to experimental nutrient enrichment on a Caribbean coral reef. Aquat. Bot. 104: 25–33.CrossrefGoogle Scholar

  • Titlyanov, E.A., T.V. Titlyanova and D.J. Chapman. 2008. Dynamics and patterns of algal colonization on mechanically damaged and dead colonies of the coral Porites lutea. Bot. Mar. 51: 285–296.Google Scholar

  • Verbruggen, H. 2014. Morphological complexity, plasticity, and species diagnosability in the application of old species names in DNA-based taxonomies. J. Phycol. 50: 26–31.CrossrefGoogle Scholar

  • Vermeij, M.J.A., A.O. Debrot, N. van der Hal, J. Bakker and R.P.M. Bak. 2010a. Increased recruitment rates indicate recovering populations of the sea urchin Diadema antillarum on Curaçao. Bull. Mar. Sci. 86: 719–725.Google Scholar

  • Vermeij, M.J.A., I. van Moorselaar, S. Engelhard, C. Hörnlein, S.M. Vonk and P.M. Visser. 2010b. The effects of nutrient enrichment and herbivore abundance on the ability of turf algae to overgrow coral in the Caribbean. PLoS One 5: e14312.CrossrefGoogle Scholar

  • Wanders, J.B.W. 1976. The role of benthic algae in the shallow coral reef of Curacao (Netherlands Antilles). I. Primary productivity. Aquat. Bot. 2: 235–270.CrossrefGoogle Scholar

  • Wanders, J.B.W. 1977. The role of benthic algae in the shallow reef of Curaçao (Netherlands Antilles) III: the significance of grazing. Aquat. Bot. 3: 357–390.CrossrefGoogle Scholar

  • Wichard, T., B. Charrier, F. Mineur, J.H. Bothwell, O.D. Clerck and J.C. Coates. 2015. The green seaweed Ulva: a model system to study morphogenesis. Front. Plant Sci. 6: 72.Google Scholar

  • Wynne, M. 2017. A checklist of benthic marine algae of the tropical and subtropical western Atlantic: fourth revision. Nova Hedwigia, Beihefte, 145. pp. 202.Google Scholar

About the article

Anna Fricke

Anna Fricke is a scientific researcher at the Instituto Argentino de Oceanografía (IADO, Argentina) and guest researcher at the Leibniz Centre for Tropical Marine Ecology (Germany). She was awarded a PhD in Natural Sciences jointly by the University of Bremen and the Leibniz Centre for Tropical Marine Ecology (Germany) for work on succession patterns of tropical turf algae, and was enrolled in International Graduate School for Marine Sciences “Global Change in the Marine Realm” (GLOMAR, MARUM Bremen). In her research she addresses the biodiversity and ecophysiology of benthic algal communities at different latitudes, ranging from descriptive to experimental studies in relation to environmental changes.

Tamara V. Titlyanova

Tamara V. Titlyanova is a scientific researcher at the Institute of Marine Biology, Russian Academy of Sciences. She is an author of more than 100 scientific papers and co-author of the books: Marine plants of Asia-Pacific region countries, their use and cultivation (2012), Marine plants of Trinity Bay and adjacent waters (Peter the Great Bay) (2013), Useful marine plants of the Asia-Pacific countries (2016), “Coral reef marine plants of Hainan Island (2017). Her present endeavor is the study of the taxonomy, physiology and ecology of marine plants in tropical and subtropical seas. Her more recent research has concentrated on decadal changes in the marine flora of the tropical and subtropical seas of the Pacific Ocean.

Mirta Teichberg

Mirta Teichberg is a marine ecologist with a position as a research scientist at ZMT since 2007 and head of the research group Algae and Seagrass Ecology since 2012. Dr Teichberg focuses on the study of marine benthic ecology including seagrass, macroalgae, and reef community dynamics and ecophysiology. She has worked in temperate and tropical coastal shallow water estuarine, mangrove, seagrass, and coral reefs ecosystems, and specializes in eutrophication and macroalgal bloom dynamics in these regions. She has expertise in nutrient enrichment experimental methods, photosynthesis and nutrient uptake and assimilation of marine plants and algae, and isotopic methods to determine linkages between land-based activities and marine benthic and pelagic communities.

Maggy M. Nugues

Maggy M. Nugues is Associate Professor at the USR 3278 CRIOBE since 2011. She studies processes and mechanisms regulating the dynamics of benthic reef organisms, in particular corals and algae. Before joining her current institution, she worked as research scientist at the Leibniz Centre for Tropical Marine Research in Germany and as postdoctoral fellow in the East Kalimantan Project at Royal NIOZ in the Netherlands. In 2004, she was appointed as Research Assistant Professor at the University of North Carolina at Wilmington in the US. She holds a PhD in environmental management from the University of York, England.

Kai Bischof

Kai Bischof heads the department of Marine Botany at the University of Bremen, Germany. From the very start of his career, his research has been focussed on the ecophysiology of seaweeds, with special emphasis on adaptive strategies under environmental change, photoacclimation and bioinvasion. Kai Bischof has been involved in a multitude of research projects in tropical regions, and both the Arctic and Antarctic, but furthermore he maintains co-operations with partners in Chile, Norway, China and New Zealand. Kai Bischof teaches aquatic botany, phycology, plant physiology, and marine ecology in BSc, MSc and PhD programs at the University of Bremen.

Received: 2017-09-24

Accepted: 2017-12-19

Published Online: 2018-01-23

Published in Print: 2018-01-26

Citation Information: Botanica Marina, Volume 61, Issue 1, Pages 33–46, ISSN (Online) 1437-4323, ISSN (Print) 0006-8055, DOI: https://doi.org/10.1515/bot-2017-0072.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in