Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Botanica Marina

Editor-in-Chief: Dring, Matthew J.

IMPACT FACTOR 2017: 0.989
5-year IMPACT FACTOR: 1.204

CiteScore 2017: 1.00

SCImago Journal Rank (SJR) 2017: 0.297
Source Normalized Impact per Paper (SNIP) 2017: 0.454

See all formats and pricing
More options …
Volume 61, Issue 2


Guidelines for DNA barcoding of coralline algae, focusing on Lithophylloideae (Corallinales) from Brazil

Beatriz N. Torrano-SilvaORCID iD: http://orcid.org/0000-0002-6614-0925 / Bruno R. Vieira
  • Instituto de Biociências, Departamento de Botânica, Universidade de São Paulo, Rua do Matão, 277, Cidade Universitária, 05508-090 – São Paulo, SP, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rafael Riosmena-Rodríguez
  • Programa de Investigación en Botánica Marina, Departamento de Biología Marina, Universidad Autónoma de Baja California Sur, Apartado Postal 19–B, 23080 La Paz, BCS, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mariana C. Oliveira
  • Instituto de Biociências, Departamento de Botânica, Universidade de São Paulo, Rua do Matão, 277, Cidade Universitária, 05508-090 – São Paulo, SP, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-03-16 | DOI: https://doi.org/10.1515/bot-2017-0040


Multiple-marker (COI-5P, UPA, psbA and rbcL-3P) and two algorithmic approaches [automatic barcode gap discovery (ABGD) and Poisson tree process (PTP)] were used for species delimitation of Lithophylloideae in Brazil. The integrative approach was mostly congruent between markers and algorithmic methods of species delimitation, suggesting the occurrence of 24 species. Based on morphology and molecular data, Amphiroa rigida, Amphiroa vanbosseae, Lithophyllum atlanticum, Lithophyllum kaiseri, Lithophyllum margaritae, Titanoderma pustulatum, Titanoderma prototypum and Paulsilvella huveorum, which were previously reported for Brazil, are confirmed in this work. Six new species are distinguished by both molecular and morphological traits, and they are provisionally named as Amphiroa sp. 1, Amphiroa sp. 2, Amphiroa sp. 3, Lithophyllum sp. 1, Lithophyllum sp. 2 and Lithophyllum sp. 3. Another 10 species are cryptic and cannot be distinguished based on traditionally used morphological traits. These include Amphiroa sp. 4, Lithophyllum sp. 4, three species that are morphologically named under Amphiroa beauvoisii, and six that share the morphology described for Amphiroa fragilissima. All four markers used were useful for species delimitation. However, a combination of practical aspects and levels of intra- and interspecific divergence values led us to propose the use of rbcL-3P as a standard DNA barcode marker for the Corallinales.

This article offers supplementary material which is provided at the end of the article.

Keywords: Amphiroa; DNA barcode; integrative taxonomy; Lithophyllum; rbcL-3P


  • Adey, W.H. and P.J. Adey. 1973. Studies on the biosystematics and ecology of the epilithic crustose Corallinaceae of the British Isles. Br. Phycol. J. 8: 343–407.CrossrefGoogle Scholar

  • Ahrens, D., T. Fujisawa, H.J. Krammer, J. Eberle, S. Fabrizi and A.P. Vogler. 2016. Rarity and incomplete sampling in DNA-based species delimitation. Systematic Biol. 65: 478–494.CrossrefGoogle Scholar

  • Bailey, J.C. 1999. Plylogenetic positions of Lithophyllum incrustans and Titanoderma pustulatum (Corallinaceae, Rhodophyta) based on 18S rRNA gene sequence analyses, with a revised classification of the Lithophylloideae. Phycologia 38: 208–216.CrossrefGoogle Scholar

  • Bittner, L., C.E. Payri, G.W. Maneveldt, A. Couloux, C. Cruaud, B. de Reviers and L. Le Gall. 2011. Evolutionary history of the Corallinales (Corallinophycidae, Rhodophyta) inferred from nuclear, plastidial and mitochondrial genomes. Mol. Phylogenet. Evol. 61: 697–713.CrossrefGoogle Scholar

  • Broom, J.E.S., D.R. Hart, T.J. Farr, W.A. Nelson, K.F. Neill, A.S. Harvey and W.J. Woelkerling. 2008. Utility of psbA and nSSU for phylogenetic reconstruction in the Corallinales based on New Zealand taxa. Mol. Phylogenet. Evol. 46: 958–973.CrossrefGoogle Scholar

  • Carro, B., L. Lopez, V. Peña, I. Bárbara and R. Barreiro. 2014. DNA barcoding allows the accurate assessment of European maerl diversity: a Proof-of-Concept study. Phytotaxa 190: 176–189.CrossrefGoogle Scholar

  • Cassano, V., J. Díaz-Larrea, A. Sentíes, M.C. Oliveira, M.C. Gil-Rodríguez and M.T. Fuji. 2009. Evidence for the conspecificity of Palisada papillosa with P. perforata (Ceramiales, Rhodophyta) from the western and eastern Atlantic Ocean on the basis of morphological and molecular analyses. Phycologia 48: 86–100.CrossrefGoogle Scholar

  • Cianciola, E.N., T.R. Popolizio, C.W. Schneider and C.E. Lane. 2010. Using molecular-assisted alpha taxonomy to better understand red algal biodiversity in Bermuda. Diversity 2: 946–958.CrossrefGoogle Scholar

  • Clarkston, B.E. and G.W. Saunders. 2010. A comparison of two DNA barcode markers for species discrimination in the red algal family Kallymeniaceae (Gigartinales, Florideophyceae), with a description of Euthora timburtonii sp. nov. Botany 88: 119–131.CrossrefGoogle Scholar

  • Costa, E.S., E.M. Plastino, R. Petti, E.C. Oliveira and M.C. Oliveira. 2012. The Gracilariaceae Germplasm Bank of the University of São Paulo, Brazil – a DNA barcoding approach. J. Appl. Phycol. 24: 1643–1653.CrossrefGoogle Scholar

  • Farr, T., J. Broom, D. Hart, K. Neill and W. Nelson. 2009. Common coralline algae of northern New Zealand: an identification guide. NIWA Information Series 70, Wellington, New Zealand. pp. 125.Google Scholar

  • Freshwater, D.W. and J. Rueness. 1994. Phylogenetic relationship of some European Gelidium (Gelidiales, Rhodophyta) species based on rbcL nucleotide sequence analysis. Phycologia 33: 187–194.CrossrefGoogle Scholar

  • Freshwater, D.W., K. Tudor, K. O’Shaughnessy and B. Wysor. 2010. DNA barcoding in the red algal order Gelidiales: comparison of COI with rbcL and verification of the “barcoding gap.” Cryptogamie Algol. 31: 435–449.Google Scholar

  • Freshwater, D.W., J.N. Idol, S.L. Parham, C. Fernández-García, N. León, P.W. Gabrielson and B. Wysor. 2017. Molecular assisted identification reveals hidden red algae diversity from the Burica Peninsula, Pacific Panama. Diversity 9: 19.CrossrefGoogle Scholar

  • Fujisawa, T. and T.G. Barraclough. 2013. Delimiting species using single-locus data and the generalized mixed yule coalescent (GMYC) approach: a revised method and evaluation on simulated datasets. Syst. Biol. 62: 707–724.CrossrefGoogle Scholar

  • Gabrielson, P.W., K.A. Miller and P.T. Martone. 2011. Morphometric and molecular analyses confirm two distinct species of Calliarthron (Corallinales, Rhodophyta), a genus endemic to the northeast Pacific. Phycologia 50: 298–316.CrossrefGoogle Scholar

  • Galtier, N., B. Nabholz, S. Glémin and G.D.D. Hurst. 2009. Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol. Ecol. 18: 4541–4550.CrossrefGoogle Scholar

  • Goff, L.J. and D.A. Moon. 1993. PCR amplification of nuclear and plastid genes from algal herbarium specimens and algal spores. J. Phycol. 29: 381–384.CrossrefGoogle Scholar

  • Guiry, M.D. and D.J.A. West. 1983. Life history and hybridization studies on Gigartina stellata and Petrocelis cruenta. J. Phycol. 19: 474–494.CrossrefGoogle Scholar

  • Harvey, A.S. and W.J. Woelkerling. 2007. A guide to nongeniculate coralline red algal (Corallinales, Rhodophyta) rhodolith identification. Cienc. Mar. 33: 411–426.CrossrefGoogle Scholar

  • Harvey, A.S., W.J. Woelkerling, T.J. Farr, K.F. Neill and W.A. Nelson. 2005. Coralline algae of central New Zealand: An identification guide to common ‘crustose’ species. NIWA Information Series 57, Wellington. 145 pp.Google Scholar

  • Harvey, A.S., W.J. Woelkerling and A.J.K. Millar. 2009. The genus Amphiroa (Lithophylloideae, Corallinaceae, Rhodophyta) from the temperate coasts of the Australian continent, including the newly described A. klochkovana. Phycologia 48: 258–290.CrossrefGoogle Scholar

  • Hebert, P.D.N., A. Cywinska, S.L. Ball and J.R. deWaard. 2003. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B 270: 313–321.CrossrefGoogle Scholar

  • Henriques, M.C., R. Riosmena-Rodriguez, L.M. Coutinho and M.A.O. Figueiredo. 2014. Lithophylloideae and Mastophoroideae (Corallinales, Rhodophyta) from the Brazilian continental shelf. Phytotaxa 190: 112–129.CrossrefGoogle Scholar

  • Hernández-Kantún, J.J., F. Rindi, W.H. Adey, S. Heesch, V. Peña, L. Le Gall and P.W. Gabrielson. 2015a. Sequencing type material resolves the identity and distribution of the generitype Lithophyllum incrustans, and related European species L. hibernicum and L. bathyporum (Corallinales, Rhodophyta). J. Phycol. 51: 791–807.CrossrefGoogle Scholar

  • Hernández-Kantún, J.J., R. Riosmena-Rodriguez, J.M. Hall-Spencer, V. Peña, C.A. Maggs and F. Rindi. 2015b. Phylogenetic analysis of rhodolith formation in the Corallinales (Rhodophyta). Eur. J. Phycol. 50: 46–61.CrossrefGoogle Scholar

  • Hernández-Kantún, J.J., P. Gabrielson, J.R. Hughey, L. Pezzolesi, F. Rindi, N.M. Robinson, V. Peña, R. Riosmena-Rodriguez, L. Le Gall and W. Adey. 2016. Reassessment of branched Lithophyllum spp. (Corallinales, Rhodophyta) in the Caribbean Sea with global implications. Phycologia 55: 619–639.CrossrefGoogle Scholar

  • Hind, K.R. and G.W. Saunders. 2013. A molecular phylogenetic study of the tribe Corallineae (Corallinales, Rhodophyta) with an assessment of genus-level taxonomic features and descriptions of novel genera. J. Phycol. 49: 103–114.CrossrefGoogle Scholar

  • Hind, K.R., P.W. Gabrielson and G.W. Saunders. 2014. Molecular-assisted alpha taxonomy reveals pseudocryptic diversity among species of Bossiella (Corallinales, Rhodophyta) in the eastern Pacific Ocean. Phycologia 53: 443–456.CrossrefGoogle Scholar

  • Iha, C., D. Milstein, S.M.P.B. Guimarães, W. Freshwater and M.C. Oliveira. 2015. DNA barcoding reveals high diversity in the Gelidiales of the Brazilian southeast coast. Bot. Mar. 58: 295–305.Google Scholar

  • Jesionek, M.B., R.G. Bahia, J.J. Hernández-Kantún, W.H. Adey, Y. Yoneshigue-Valentin, L.L. Longo and G.M. Amado-Filho. 2016. A taxonomic account of non-geniculate coralline algae (Corallinophycidae, Rhodophyta) from shallow reefs of the Abrolhos Bank, Brazil. Algae 31: 317–340.CrossrefGoogle Scholar

  • Jesus, P.B., F. Nauer, G.M. Lyra, V. Cassano, M.C. Oliveira, J.M.C. Nunes and A.S. Schnaldelbach. 2016. Species-delimitation and phylogenetic analyses of some cosmopolitan species of Hypnea (Rhodophyta) reveal synonyms and misapplied names to H. cervicornis, including a new species from Brazil. J. Phycol. 52: 774–792.CrossrefGoogle Scholar

  • Keats, D.W. 1997. Lithophyllm insipidum Adey, Townsend et Boykins and L. flvescens sp. nov.: two flt lithophylloid coralline algae (Corallinales, Rhodophyta) abundant in shallow reef environments in Fiji. Phycologia: 36: 351–365.CrossrefGoogle Scholar

  • Kogame, K., S. Uwai, R.J. Anderson, H.-G. Choi and J.J. Bolton. 2017. DNA barcoding of South African geniculate coralline red algae (Corallinales, Rhodophyta). S. Afr. J. Bot. 108: 337–341.CrossrefGoogle Scholar

  • Le Gall, L. and G.W. Saunders. 2010. DNA barcoding is a powerful tool to uncover algal diversity: a case study of the Phyllophoraceae (Gigartinales, Rhodophyta) in the Canadian flora. J. Phycol. 46: 374–389.CrossrefGoogle Scholar

  • Martone, P.T., S.C. Lindstrom, K.A. Miller and P.W. Gabrielson. 2012. Chiharaea and Yamadaia (Corallinales, Rhodophyta) represent reduced and recently derived articulated coralline morphologies. J. Phycol. 48: 859–868.CrossrefGoogle Scholar

  • Mayden, R.L. 1997. A hierarchy of species concepts: the denouement in the saga of the species problem. In: (M.F. Claridge, H.A. Dawah and M.R. Wilson, eds) Species: the units of diversity. Chapman and Hall, London. pp. 381–423.Google Scholar

  • Mayr, E. 1963. Animal species and evolution. The Belnap Press of Harvard University, Cambridge. pp. i-xvi + 797.Google Scholar

  • Milne, I., F. Wright, G. Rowe, D.F. Marshal, D. Husmeier and G. McGuire. 2004. TOPALi: software for automatic identification of recombinant sequences within DNA multiple alignments. Bioinformatics 20: 1806–1807.CrossrefGoogle Scholar

  • Milstein, D., A.S. Medeiros, E.C. Oliveira and M.C. Oliveira. 2012. Will a DNA barcoding approach be useful to identify Porphyra species (Bangiales, Rhodophyta)? J. Appl. Phycol. 24: 837–845.Google Scholar

  • Moura, C.W.N. and S.M.P.B. Guimarães. 2005. O gênero Amphiroa (Lithophylloideae, Rhodophyta) no litoral do Brasil. Monografías Ficológicas 2: 3–65.Google Scholar

  • Moura, C.W.N., J.E. Kraus and M. Cordeiro-Marino. 1997. Metodologia para obtenção de cortes histológicos com historresina e coloração com azul de toluidina O para algas coralináceas (Rhodophyta, Corallinales). Hoehnea 24: 17–27.Google Scholar

  • Nauer, F., N.R. Guimarães, V. Cassano, N.S. Yokoya and M.C. Oliveira. 2014. Hypnea species (Gigartinales, Rhodophyta) from the southeastern coast of Brazil based on molecular studies complemented with morphological analyses, including descriptions of Hypnea edeniana sp. nov. and H. flava sp. nov. Eur. J. Phycol. 49: 550–575.CrossrefGoogle Scholar

  • Padial, J.M., A. Miralles, I. De La Riva and M. Vences. 2010. The integrative future of taxonomy. Front. Zool. 7: 16.CrossrefGoogle Scholar

  • Pardo, C., L. Lopez, V. Peña, J. Hernández-Kantún, L. Le Gall, I. Bárbara and R. Barreiro. 2014. A multilocus species delimitation reveals a striking number of species of coralline algae forming maerl in the OSPAR maritime area. PLoS One 9: e104073. doi:10.1371/journal.pone.0104073.CrossrefGoogle Scholar

  • Peña, V., J.J. Hernández-Kantún, J. Grall, C. Pardo, L. Lopez, I. Barbara, L. Le Gall and R. Barreiro. 2014. Detection of gametophytes in the maerl-forming species Phymatolithon calcareum (Melobesioideae, Corallinales) assessed by DNA barcoding. Cryptogamie Algol. 35: 15–25.CrossrefGoogle Scholar

  • Peña, V., O. De Clerck, J. Afonso-Carrillo, E. Ballesteros, I. Barbara, R. Barreiro and L. Le Gall. 2015a. An integrative systematic approach to species diversity and distribution in the genus Mesophyllum (Corallinales, Rhodophyta) in Atlantic and Mediterranean Europe. Eur. J. Phycol. 50: 20–36.CrossrefGoogle Scholar

  • Peña, V., C. Pardo, L. Lopez, B. Carro, J. Hernández-Kantún, W.H. Adey, I. Barbara, R. Barreiro and L. Le Gall. 2015b. Phymatolithon lusitanicum sp. nov. (Hapalidiales, Rhodophyta): the third most abundant maerl-forming species in the Atlantic Iberian peninsula. Cryptogamie Algol. 36: 429–459.CrossrefGoogle Scholar

  • Presting, G.G. 2006. Identification of conserved regions in the plastid genome: implications for DNA barcoding and biological function. Can. J. Bot. 84: 1434–1443.CrossrefGoogle Scholar

  • Puillandre, N., A. Lambert, S. Brouillet and G. Achaz. 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 21: 1864–1877.CrossrefGoogle Scholar

  • Reid, N.M. and B.C. Carstens. 2012. Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model. Evol. Biol. 12: 196.Google Scholar

  • Richards, J.L., P.W. Gabrielson and S. Fredericq. 2014. New insights into the genus Lithophyllum (Lithophylloideae, Corallinaceae, Corallinales) from deepwater rhodolith beds offshore the NW Gulf of Mexico. Phytotaxa 190: 162–175.CrossrefGoogle Scholar

  • Riosmena-Rodríguez, R., W.J. Woelkerling and M.S. Foster. 1999. Taxonomic reassessment of rhodolith-forming species of Lithophyllum (Corallinales, Rhodophyta) in the Gulf of California, Mexico. Phycologia 38: 401–417.CrossrefGoogle Scholar

  • Robba, L., S.J. Russell, G.L. Barker and J. Brodie. 2006. Assessing the use of the mitochondrial cox1 marker for use in DNA Barcoding of red algae (Rhodophyta). Am. J. Bot. 93: 1101–1108.CrossrefGoogle Scholar

  • Rösler, A., F. Perfectti, V. Peña and J.C. Braga. 2016. Phylogenetic relationships of corallinaceae (Corallinales, Rhodophyta): taxonomic implications for reef-building corallines. J. Phycol. 52: 412–431.CrossrefGoogle Scholar

  • Sanger, F., S. Nicklen and A.R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. P. Natl. Acad. Sci. USA 74: 5463–5467.CrossrefGoogle Scholar

  • Sauer, J. and B. Hausdorf. 2012. A comparison of DNA-based methods for delimiting species in a Cretan land snail radiation reveals shortcomings of exclusively molecular taxonomy. Cladistics 28: 300–316.CrossrefGoogle Scholar

  • Saunders, G.W. 2005. Applying DNA barcoding to red macroalgae: a preliminar y appraisal holds promise for future applications. Philos. T. Roy. Soc. B 360: 1879–1888.CrossrefGoogle Scholar

  • Saunders, G.W. 2008. A DNA barcode examination of the red algal family Dumontiaceae in Canadian waters reveals substantial cryptic species diversity. 1. The foliose Dilsea-Neodilsea complex and Weeksia. Botany 86: 773–789.CrossrefGoogle Scholar

  • Saunders, G.W. and B. McDonald. 2010. DNA barcoding reveals multiple overlooked Australian species of the red algal order Rhodymeniales (Florideophyceae), with resurrection of Halopeltis J. Agardh and description of Pseudohalopeltis gen. nov. Botany 88: 639–667.CrossrefGoogle Scholar

  • Saunders, G.W. and T.E. Moore. 2013. Refinements for the amplification and sequencing of red algal DNA barcode and RedToL phylogenetic markers: a summary of current primers, profiles and strategies. Algae 28: 31–43.CrossrefGoogle Scholar

  • Seo, K.S., T.O. Cho, J.S. Park, E.C. Yang, H.S. Yoon and S.M. Boo. 2003. Morphology, basiphyte range, and plastid DNA phylogeny of Campylaephora borealis stat. nov. (Ceramiaceae, Rhodophyta). Taxon 52: 9–19.CrossrefGoogle Scholar

  • Setchell, W.A. 1943. Mastophora and the Mastophoreae: genus and subfamily of Corallinaceae. P. Natl. Acad. Sci. USA 29: 127–135.CrossrefGoogle Scholar

  • Sherwood, A.R. and G.G. Presting. 2007. Universal primers amplify a 23S rDNA plastid marker in Eukaryotic algae and cyanobacteria. J. Phycol. 43: 605–608.CrossrefGoogle Scholar

  • Sherwood, A.R., A. Kurihara, K.Y. Conklin, T. Sauvage and G.G. Presting 2010a. The Hawaiian Rhodophyta Biodiversity Survey (2006–2010): a summary of principal findings. BMC Plant Biol. 10: 258.CrossrefGoogle Scholar

  • Sherwood, A.R., T. Sauvage, A. Kurihara, K.Y. Conklin and G.G. Presting 2010b. A comparative analysis of COI, LSU and UPA marker data for the Hawaiian florideophyte Rhodophyta: implications for DNA barcoding of red algae. Cryptogamie Algol. 31: 451–465.Google Scholar

  • Sissini, M.N., M.C. Oliveira, P.W. Gabrielson, N.R. Robinson, Y.B. Okolodkov, R. Riosmena-Rodríguez and P.A. Horta. 2014. Mesophyllum erubescens (Corallinales, Rhodophyta) – so many species in one epithet. Phytotaxa 190: 299–319.CrossrefGoogle Scholar

  • Spalding, M.D., H.E. Fox, G.R. Allen, N. Davidson, Z.A. Ferdaña, M. Finlayson, B.S. Halpern, M.A. Jorge, A. Lombana, S.A. Lourie, K.D. Martin, E. McManus, J. Molnar, C.A. Recchia and J. Robertson. 2007. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57: 573–583.CrossrefGoogle Scholar

  • Torrano-Silva, B.N., R. Riosmena-Rodrígues and M.C. Oliveira. 2014. Systematic position of Paulsilvella in the Lithophylloideae (Corallinaceae, Rhodophyta) confirmed by molecular data. Phytotaxa 190: 94–111.CrossrefGoogle Scholar

  • Verbruggen, H., M.J.L. Brookes and J.F. Costa. 2017. DNA barcodes and morphometric data indicate that Codium fragile may consist of two species (Bryopsidales, Chlorophyta). Phycologia 56: 54–62.CrossrefGoogle Scholar

  • Vieira-Pinto, T., M.C. Oliveira, J. Bouzon, M. Sissini, J.L. Richards, R. Riosmena-Rodríguez and P.A. Horta. 2014. Lithophyllum species from Brazilian coast: range extension of Lithophyllum margaritae and description of Lithophyllum atlanticum sp. nov. (Corallinales, Corallinophycidae, Rhodophyta). Phytotaxa 190: 355–369.CrossrefGoogle Scholar

  • Villas-Boas, A.B., R. Riosmena-Rodriguez, G.M. Amado-Filho, G. Maneveldt and M.A. Figueiredo. 2009. Rhodolith-forming species of Lithophyllum (Corallinales; Rhodophyta) from Espírito Santo state, Brazil, including the description of L. depressum sp. nov. Phycologia 48: 237–248.CrossrefGoogle Scholar

  • Walker, R.H., J. Brodie, S. Russel and L.M. Irvine. 2009. Biodiversity of coralline algae in the Northeastern Atlantic including Corallina caespitosa sp. nov. (Corallinoideae, Rhodophyta). J. Phycol. 45: 287–297.CrossrefGoogle Scholar

  • Woelkerling, W.J. 1988. The coralline red algae: an analysis of the genera and subfamilies of nongeniculate Corallinaceae. British Museum (Natural History) and Oxford University Press, London. pp. i–xi + 268.Google Scholar

  • Woelkerling, W.J. and S.J. Campbell. 1992. An account of southern Australian species of Lithophyllum (Corallinaceae, Rhodophyta). Bull. Br. Mus. Nat. Hist. Bot 22: 1–107.Google Scholar

  • Woelkerling, W.J., L.M. Irvine and A. Harvey. 1993. Growth-forms in non-geniculate coralline red algae (Corallinales, Rhodophyta). Aust. Syst. Bot. 6: 277–293.CrossrefGoogle Scholar

  • Woelkerling, W.M.J., G. Sartoni and S. Bod. 2002. Paulsilvella huveorum gen. & sp. nov. (Corallinaceae, Rhodophyta) from the Holocene of Somalia and Kenya, with a reassessment of Lithothrix antiqua from the Late Pleistocene of Mauritius. Phycologia 41: 358–373.CrossrefGoogle Scholar

  • Yang, E.C. and S.M. Boo. 2004. Evidence for two independent lineages of Griffithsia (Ceramiaceae, Rhodophyta) based on plastid protein-coding psaA, psbA, and rbcL gene sequences. Mol. Phylogenet. Evol. 31: 680–688.CrossrefGoogle Scholar

  • Yoon, H.S., J.D. Hackett and D. Bhattacharya. 2002. A single origin of the peridinin and fucoxanthin containing plastids in dinoflagellates through tertiary endossymbiosis. Proc. Nat. Acad. Sci. Unit. St. Am. 99: 11724–11729.CrossrefGoogle Scholar

  • Zhang, J., P. Kapli, P. Pavlidis and A. Stamatakis. 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29: 2869–2876.CrossrefGoogle Scholar

About the article

Beatriz N. Torrano-Silva

Beatriz N. Torrano-Silva initial investigation was in invasive species, followed by taxonomy and flora composition based on traditional techniques. For her PhD research she worked at University of São Paulo and also at Universidad Autónoma de Baja Califórnia Sur. Her last years were dedicated to coralline algae diversity, taxonomy and systematics, combining the traditional methodologies with molecular biology as an important ally. She is especially interested in bringing science to society and is currently a professor at Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), Brazil.

Bruno R. Vieira

Bruno R. Vieira works as an editor and author of biology and sciences in Somos Educação S.A., Brazil, and is a volunteer teacher at a nonprofit educational organization. He graduated in biology at University of São Paulo (USP), where he also completed his undergraduate training research in phycology. He has been working with education and scientific divulgation for 9 years. His main goal is to develop different and interesting approaches to teach and attract people’s interest in scientific knowledge. He has edited 21 books, written 10 books and developed more than 150 digital learning objects.

Rafael Riosmena-Rodríguez

Rafael Riosmena-Rodríguez was for over 20 years one of the leading scientists in Mexico in the field of marine botany, and a leading researcher in the field of rhodolith taxonomy and ecology. He contributed largely as the principal investigator and leader of the Marine Botany Laboratory at UABCS. Dr. Riosmena-Rodríguez produced more than a 100 scientific articles, over 40 projects as P.I., 40 book chapters, and 5 books. He was the main advisor of 12 PhD, 20 Master’s and 30 Bachelor’s students. Dr. Riosmena-Rodríguez untimely passed away in March 2016.

Mariana C. Oliveira

Mariana C. Oliveira is a full professor of University of São Paulo (USP), Brazil. Her PhD work was on molecular phylogeny of the Bangiales. Her main expertise is in molecular phylogeny and taxonomy of algae, genomics of algae and bacteria, focusing mainly on red algae. She is interested in the origin, evolution and diversity of Rhodophyta. Presently she integrates the Phycological Society of America as international VP, the coordination committee of the Biota-FAPESP program and is the president of the Botany Advisory committee of CNPq.

Received: 2017-04-26

Accepted: 2018-02-15

Published Online: 2018-03-16

Published in Print: 2018-03-28

Citation Information: Botanica Marina, Volume 61, Issue 2, Pages 127–140, ISSN (Online) 1437-4323, ISSN (Print) 0006-8055, DOI: https://doi.org/10.1515/bot-2017-0040.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in