Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Botanica Marina

Editor-in-Chief: Dring, Matthew J.


IMPACT FACTOR 2017: 0.989
5-year IMPACT FACTOR: 1.204

CiteScore 2018: 1.22

SCImago Journal Rank (SJR) 2018: 0.399
Source Normalized Impact per Paper (SNIP) 2018: 0.672

Online
ISSN
1437-4323
See all formats and pricing
More options …
Volume 62, Issue 3

Issues

The seaweed resources of Chile over the period 2006–2016: moving from gatherers to cultivators

Carolina Camus
  • Centro i∼mar and CeBiB, Universidad de Los Lagos, Camino Chinquihue Km 6, Puerto Montt, Chile
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ María del Carmen Hernández-González
  • Centro i∼mar and CeBiB, Universidad de Los Lagos, Camino Chinquihue Km 6, Puerto Montt, Chile
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alejandro H. Buschmann
  • Corresponding author
  • Centro i∼mar and CeBiB, Universidad de Los Lagos, Camino Chinquihue Km 6, Puerto Montt, Chile
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-12-20 | DOI: https://doi.org/10.1515/bot-2018-0030

Abstract

Chile, located in the southeastern Pacific, possess a high richness of seaweed species, some of which have been traditionally extracted from natural beds for the production of hydrocolloids (e.g. agar, carrageenan and alginates), but still a high proportion of the biomass is being exported as dried material to processors in Asia and Europe. During the period 2006–2016, this tendency has been maintained, but has also started to show signs of changing towards a more sustainable, localized seaweed industry as new actions by the Chilean government provided subsidies to seaweed farming activities and also to investments in local valorization of the resources. This “sea change” has been further supported by an increase in the number of localized scientific and technical studies related to Chilean seaweed resources which has prepared the foundation required in order to move to more advanced stages of local seaweed farming and development of local processing.

This article offers supplementary material which is provided at the end of the article.

Keywords: Chile; hydrocolloids; Phaeophyceae; Rhodophyta; seaweed landings; volumes

References

  • Aduanas de Chile. 2018. www.aduana.cl.

  • Agurto, C., A. Maldonado, J.C. Carrasco, S. Riquelme, J. Farias and N. Troncoso. 2017. Biomateriales funcionales a partir de biomasa macroalgal del centro-sur de Chile para la industria forestal y agrícola. X Congreso Chileno de Micro y Macroalgas. 18 Julio 2017, Coquimbo, Chile.Google Scholar

  • Ávila, M., C. Merino, K. Guissen and M.I. Piel. 2010. Manual de cultivo de macroalgas pardas: Desde el laboratorio al océano. Programa de manejo, cultivo y repoblamiento para las algas pardas en la región de Tarapacá. Proyecto FICR-Gobierno Regional de Tarapacá, Iquique. 36 pp.Google Scholar

  • Ávila, M., C. Godoy and D. Rodríguez. 2012. Manual para el repoblamiento de algas: desde la extracción hacia la agronomía marina. Resultados y lecciones aprendidas. Serie Programa Educativo Participativo para la Pesca Artesanal. I El repoblamiento de lugas. Proyecto FONDEF AQ08I1011. Universidad Arturo Prat, Puerto Montt. 70 pp.Google Scholar

  • Balina, K., F. Romagnoli and D. Blumberga. 2017. Seaweed biorefinery concept for sustainable use of marine resources. Energy Prodecia 128: 504–511.CrossrefGoogle Scholar

  • Barrento, S., C. Camus, I. Sousa-Pinto and A.H. Buschmann. 2016. Germplasm banking of the giant kelp: Our biological insurance in a changing environment. Algal Res. 13: 134–140.CrossrefGoogle Scholar

  • Bell, T.W., K.C. Cavanaugh, D.C. Reed and D.A. Siegel. 2015. Geographical variability in the controls of giant kelp biomass dynamics. J. Biogeogr. 42: 2010–2021.CrossrefGoogle Scholar

  • Bikker, P., M.M. van Krimpen, P. van Wikselaar, B. Houweling-Tan, N. Scaccia, J.W. van Hal, W.J.J. Huijgen, J.W. Cone and A.M. López-Contreras. 2016. Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels. J. Appl. Phycol. 28: 3511–3525.CrossrefGoogle Scholar

  • Bulboa, C. and J. Macchiavello. 2006. Cultivation of cystocarpic, tetrasporic and vergetative fronds of Chondracanthus chamissoi (Rhodophyta, Gigartinales) on ropes at two localities in northern Chile. Invest. Mar. 34: 109–112.Google Scholar

  • Buschmann, A.H., D.A. Varela and M.C. Hernández-González. 2008. Seaweed future cultivation in Chile: perspectives and challenges. Int. J. Environ. Pollut. 33: 432–456.CrossrefGoogle Scholar

  • Buschmann, A.H., J.A. Correa, R. Westermeier, M.A. Paredes, D. Aedo, P. Potin, G. Aroca, J. Beltrán and M.C. Hernández-González. 2001. Cultivation of Gigartina skottsbergii (Gigartinales, Rhodophyta): recent advances and challenges for the future. J. Appl. Phycol. 13: 253–265.CrossrefGoogle Scholar

  • Buschmann, A.H., R.A. Stead, M.C. Hernández-González, S.V. Pereda, J.E. Paredes and M.A. Maldonado. 2013. Un análisis crítico sobre el uso de macroalgas como base para una acuicultura sustentable. Rev. Chil. Hist. Nat. 86: 251–264.CrossrefGoogle Scholar

  • Buschmann, A.H., S. Prescott, P. Potin, S. Faugeron, J. A. Vásquez, C. Camus, J. Infante, M. C. Hernández-González, A. Gutiérrez and D. A. Varela. 2014. The status of kelp exploitation and marine agronomy, with emphasis on Macrocystis pyrifera, in Chile. Adv. Bot. Res. 71: 161–188.CrossrefGoogle Scholar

  • Buschmann, A.H., C. Camus, J. Infante, A. Neori, A. Israel, M.C. Hernández-González, S.V. Pereda, J.L. Gomez-Pinchetti, A. Golberg, N. Tadmor-Shalev and A.T. Critchley. 2017. Seaweed production: overview of the global state of exploitation, farming and emerging research activity. Eur. J. Phycol. 52: 391–406.CrossrefGoogle Scholar

  • Camus, P.A. 2001. Biogeografía marina de Chile continental. Rev. Chil. Hist. Nat. 74: 587–617.Google Scholar

  • Camus, C. and A.H. Buschmann. 2017. Aquaculture in Chile: What about seaweeds? World Aquaculture March. pp. 40–42.Google Scholar

  • Camus, C., P. Ballerino, R. Delgado, A. Olivera-Nappa, C. Leyton and A.H. Buschmann. 2016. Scaling up bioethanol production from the farmed Brown macroalga Macrocystis pyrifera in Chile. Biofuels, Bioprod. Biorefin. 10: 673–685.CrossrefGoogle Scholar

  • Camus, C., J. Infante and A.H. Buschmann. 2018a. Overview of 3 year precommercial seafarming of Macrocystis pyrifera along the Chilean coast. Rev. Aquacult. 10: 543–559.CrossrefGoogle Scholar

  • Camus, C., S. Faugeron and A.H. Buschmann. 2018b. Assessment of genetic and phenotypic diversity of the giant kelp, Macrocystis pyrifera, to support breeding programs. Algal Research 30: 101–112.CrossrefGoogle Scholar

  • Candia, A. and M. Núñez. 2013a. Protocolo de cultivo Luga Negra, Luga Roja. Diversificación de la actividad productiva de las áreas de manejo y concesiones acuícolas, mediante la transferencia de tecnología de repoblación y cultivo de luga negra y luga roja, altamente demandadas por la industria regional productora de carrageninas. Proyecto HUAM AQ08I1031. Instituto de Fomento Pesquero, Puerto Montt. 16 pp.Google Scholar

  • Candia, A. and M. Núñez. 2013b. Protocolo de repoblación Luga Negra y Luga Roja. Diversificación de la actividad productiva de las áreas de manejo y concesiones acuícolas, mediante la transferencia de tecnología de repoblación y cultivo de luga negra y luga roja, altamente demandadas por la industria regional productora de carrageninas. Proyecto HUAM AQ08I1031. 17 pp. Instituto de Fomento Pesquero, Puerto Montt. 16 pp.Google Scholar

  • Castilla, J.C. and P.E. Neill. 2009. Marine bioinvasions in the Southeastern Pacific: Status, ecology, economic impacts, conservation and management. In: (G. Rilov and J.A. Crooks, eds) Biological Invasions in Marine Ecosystems. Springer, Berlin. pp. 439–457.Google Scholar

  • Contador, C.A., C. Shene, A. Olivera, Y. Yoshikuni, A.H. Buschmann, B.A. Andrews and J.A. Asenjo. 2015. Analyzing redox balance in a synthetic yeast platform to improve utilization of brown macroalgae as feedstock. Metab. Eng. Commun. 2: 76–84.CrossrefGoogle Scholar

  • Correa, T., A. Gutiérrez, R. Flores, A.H. Buschmann, P. Cornejo and C. Bucarey. 2016. Production and economic assessment of giant kelp Macrocystis pyrifera cultivation for abalone feed in the south of Chile. Aquacult. Res. 47: 298–307.Google Scholar

  • Duarte, C.M., J. Wu, X. Xiao, A. Bruhn and D. Krause-Jensen. 2017. Can seaweed farming play a role in climate change mitigation and adaptation? Front. Mar. Sci. 4: 100.Google Scholar

  • Edding, M. and F. Tala. 2003. Development of techniques for the cultivation of Lessonia trabeculata Villouta et Santelices (Phaeophyceae: Laminariales) in Chile. Aquacult. Res. 34: 507–515.CrossrefGoogle Scholar

  • Fernández, M., E. Jaramillo, P.A. Marquet, C.A. Moreno, S.A. Navarrete, F.P. Ojeda, C.R. Valdovinos and J.A. Vásquez. 2000. Diversity, dynamics and biogeography of Chilean benthic nearshore ecosystems: an overview and guidelines for conservation. Rev. Chil. Hist. Nat. 73: 797–830.Google Scholar

  • Gepp, M.M., B. Fischer, A. Schulz, J. Dobringer, L. Gentile, J.A. Vásquez, J.C. Neubauer and H. Zimmermann. 2017. Bioactive surfaces from seaweed-derived alginates for the cultivation of human stem cells. J. Appl. Phycol. 29: 2451–2461.CrossrefGoogle Scholar

  • Glasson, C.R.K., I.M. Sims, S.M. Carnachan, R. de Nys and M. Magnusson. 2017. A cascading biorefinery process targeting sulfated polysaccharides (ulvan) from Ulva ohnoi. Algal Res. 27: 383–391.CrossrefGoogle Scholar

  • Guillemin, M-L., S. Faugeron, C. Destombe, F. Viard, J.A. Correa and M. Valero. 2008. Genetic variation in wild and cultivated populations of the haploid-diploid red alga Gracilaria chilensis: how farming practices favor asexual reproduction and heterozygosity. Evolution 62: 1500–1519.CrossrefGoogle Scholar

  • Guillemin, M-L., M. Valero, F. Tellier, E.C. Macaya, C. Destombe and S. Faugeron. 2016. Phylogeography of seaweeds in the south east pacific: complex evolutionary processes along a latitudinal gradient. In: (Z.M. Hu and C. Fraser, eds) Seaweed Phylogeography. Springer, Dordrecht. pp. 251–277.Google Scholar

  • Gutiérrez, A., T. Correa, V. Muñoz, A. Santibañez, R. Marcos, C. Cáceres and A.H. Buschmann. 2006. Farming of the giant kelp Macrocystis pyrifera in southern Chile for development of novel food products. J. Appl. Phycol. 18: 259–267.CrossrefGoogle Scholar

  • Hafting, J.T., J.S. Craigie, D.B. Stengel, R.R. Loureiro, A.H. Buschmann, M.D. Edwards and A.T. Critchley. 2015. Prospects and challenges for industrial production of seaweed bioactives. J. Phycol. 51: 821–837.CrossrefGoogle Scholar

  • Halling, C., G. Aroca, M. Cifuentes, A.H. Buschmann and M. Troell. 2005. Comparison of spore inoculated and vegetative propagated cultivation methods of Gracilaria chilensis in an integrated seaweed and fish cage culture. Aquac. Int. 13: 409–422.CrossrefGoogle Scholar

  • Hou, X., J.H. Hansen and A.B. Bjerre. 2015. Integrated bioethanol and protein production from brown seaweed Laminaria digitata. Bioresour Technol 197: 310–317.CrossrefGoogle Scholar

  • Hurtado, A.Q., I.C. Neish and A.T. Critchley. 2015. Developments in production technology of Kappaphycus in the Philippines: more than four decades of farming. J. Appl. Phycol. 27: 1945–1961.CrossrefGoogle Scholar

  • Kim, J.K., C. Yarish, E.K. Hwang, M. Park and Y. Kim. 2017. Seaweed aquaculture: cultivation technologies, challenges and its ecosystem services. Algae 32: 1–13.CrossrefGoogle Scholar

  • Kock, K., M. Thiel, F. Tellier, W. Hagen, M. Graeve, F. Tala, P. Laeseke and K. Bischof. 2015. Species separation within the Lessonia nigrescens complex (Phaeophyceae, Laminariales) is mirrored by ecophysiological traits. Bot. Mar. 58: 81–92.Google Scholar

  • Krumhansl, K.A., D.K. Okamoto, A. Rassweiler, M. Novak, J.J. Bolton, K.C. Cavanaugh, S.D. Connell, C.R. Johnson, B. Konar, S.D. Ling, F. Micheli, K.M. Norderhaug, A. Perez-Matus, I. Sousa-Pinto, D.C. Reed, A.K. Salomon, N.T. Shears, T. Wernberg, R.J. Anderson, N.S. Barrett, A.H. Buschmann, M.H. Carr, J.E. Caselle, S. Derrien-Courtel, G.J. Edgar, M. Edwards, J.A. Estes, C. Goodwin, M.C. Kenner, D.J. Kushner, F.E. Moy, J. Nunn, R.S. Steneck, J. Vásquez, J. Watson, J.D. Witman and J.E.K. Byrnes. 2017. Global patterns of kelp forest change over the past half-century. PNAS 113: 13875–13890.Google Scholar

  • Leyton, A., R. Pezoa-conte, A. Barriga, A.H. Buschmann, P. Mäki-Arvela, J-P. Mikkola and M.E. Lienqueo. 2016. Identification and efficient extraction method of phlorotannins from the brown seaweed Macrocystis pyrifera using an orthogonal experiment design. Algal Research 16: 201–208.CrossrefGoogle Scholar

  • Leyton, A., R. Pezoa-Conte, P. Mäki-Arvela, J-P. Mikkola and M.E. Lienqueo. 2017. Improvement in carbohydrate and phlorotannin extraction from Macrocystis pyrifera using carbohydrate active enzyme from marine Alternaria sp. as pretreatment. J. Appl. Phycol. 29: 2039–2048.CrossrefGoogle Scholar

  • López-Cristoffanini, C., F. Tellier, R. Otaíza, J.A. Correa and L. Contreras. 2013. Tolerance to air exposure: a feature driving the latitudinal distribution of two sibling kelp species. Bot. Mar. 56: 431–440.Google Scholar

  • Macchiavello, J., E. Araya and C. Bulboa. 2010. Production of Macrocystis pyrifera (Laminariales; Phaeophyceae) in northern Chile on spore-based culture. J. Appl. Phycol. 22: 691–697.CrossrefGoogle Scholar

  • Macchiavello, J., C. Sepúlveda, F. Sáez and N. Mendiz. 2014. Manual de cultivo de Chondracanthus chamissoi (Chicorea de mar). Acuicultura en áreas de manejo: una innovación para mejorar su desempeño mediante el cultivo suspendido de chicorea de mar (Chondracanthus chamissoi) en la Región de Antofagasta. Proyecto Innova Corfo 12BPCR-16600. Universidad Católica del Norte, Coquimbo. 29 pp.Google Scholar

  • Mazarrasa, I., Y.S. Olsen, E. Mayol, N. Marba and C.M. Duarte. 2014. Global unbalance in seaweed production, research effort and biotechnology markets. Biotechnol. Adv. 32: 1028–1036.CrossrefGoogle Scholar

  • Meneses, I. and B. Santelices. 2000. Patterns and breaking points in the distribution of benthic algae along the temperate Pacific coast of South America. Rev. Chil. Hist. Nat. 73: 615–623.Google Scholar

  • Oppliger, V., J.A. Correa, S. Faugeron, J. Béltran, F. Tellier, M. Valero and C. Destombe. 2011. Sex ratio variation in the Lessonia nigrescens complex (Laminariales, Phaeophyceae): effect of latitude, temperature and marginality. J. Phycol. 47: 5–12.CrossrefGoogle Scholar

  • Oppliger, V., J.A. Correa, A.H. Engelen, F. Tellier, V. Viera, S. Faugeron, M. Valero, G. Gomez and C. Destombe. 2012. Temperature effects on gametophyte life-history traits and geographic distribution of two cryptic kelp species. PLoS One 7: e39289.CrossrefGoogle Scholar

  • Otaíza, R.D. and J. Cáceres. 2015. Manual de una técnica para el repoblamiento de la luga negra, Sarcothalia crispata (Bory) Leister (Rhodophyta, Gigartinales), en praderas naturales, Región del Biobío. Proyecto FONDEF HUAM AQ12I0004. Universidad Católica de la Santísima Concepción, Concepción. 50 pp.Google Scholar

  • Porse, H. and B. Rudolph. 2017. The seaweed hydrocolloid industry: 2016 updates, requirements, and outlook. J. Appl. Phycol. 29: 2187–2200.CrossrefGoogle Scholar

  • Romo, H., K. Alveal and C. Werlinger. 2001. Growth of the commercial carrageenophyte Sarcothalia crispata (Rhodophyta, Gigartinales) on suspended culture in central Chile. J. Appl. Phycol. 13: 229–234.Google Scholar

  • Romo, H., M. Ávila, M. Núñez, R. Pérez, A. Candia, and G. Aroca. 2006. Culture of Gigartina skottsbergii (Rhodophyta) in southern Chile. A pilot scale approach. J. Appl. Phycol. 18: 307–314.CrossrefGoogle Scholar

  • Santelices, B. 1980. Phytogeographic characterization of the temperate coast of Pacific South America. Phycologia 19: 1–12.CrossrefGoogle Scholar

  • Santelices, B. 1996. Seaweed research and utilization in Chile: moving into a new phase. Hydrobiologia 326/327: 1–14.CrossrefGoogle Scholar

  • Santelices, B. 1999. A conceptual framework for marine agronomy. Hydrobiologia 398: 15–23.Google Scholar

  • Santelices, B. and Meneses, I. 2000. A reassessment of the phytogeographic characterization of temperate Pacific South America. Rev. Chil. Hist. Nat. 73: 605–614.Google Scholar

  • SERNAPESCA (Servicio Nacional de Pesca y Acuicultura). 2018. Anuario Estadístico. www.sernapesca.cl.

  • Straub, S., M. Thomsen and T. Wernberg. 2016. The dynamic biogeography of the Anthropocene: the speed of recent range shifts in seaweeds. In: (Z.M. Hu and C. Fraser, eds) Seaweed Phylogeography. Springer, Dordrecht. pp. 63–93.Google Scholar

  • Tellier, F., A.P. Meynard, J.A. Correa, S. Faugeron and M. Valero. 2009. Phylogeographic analyses of the 30°S south-east Pacific biogeographic transition zone establish the occurrence of a sharp genetic discontinuity in the kelp Lessonia nigrescens: Vicariance or parapatry? Mol. Phylogenet. Evol. 53: 679–693.CrossrefGoogle Scholar

  • Tellier, F., J.M.A. Vega, B.R. Broitman, J.A. Vasquez, M. Valero and S. Faugeron. 2011. The importance of having two species instead of one in kelp management: the Lessonia nigrescens species complex. Cah. Biol. Mar. 52: 455–465.Google Scholar

  • Thiel, M., E.C. Macaya, E. Acuña, W.E. Arntz, H. Bastias, K. Brokordt, P.A. Camus, J.C. Castilla, L.R. Castro, M. Cortés, C.P. Dumont, R. Escribano, M. Fernandez, J.A. Gajardo, C.F. Gaymer, I. Gómez, A.E. González, H.E. González, P.A. Haye, J.E. Illanes, J.L. Iriarte, D.A. Lancellotti, G. Luna-Jorquera, C. Luxoro, P.H. Manríquez, V. Marín, P. Muñoz, S.A. Navarrete, E. Pérez, E. Poulin, J. Sellanes, S.H. Sepúlveda, W. Stotz, F. Tala, A. Thomas, C.A. Vargas, J.A. Vásquez and J.A. Alonso Vega. 2007. The Humboldt current system of northern and central Chile. Oceanographic processes, ecological interactions and socioeconomic feedback. Oceanogr. Mar. Biol. Annu. Rev. 45: 195–344.Google Scholar

  • Uribe, E., A. Vega-Gálvez, V. Heredia, A. Pastén and K. Di Scala. 2018. An edible red seaweed (Pyropia orbicularis): influence of vacuum drying on physicochemical composition, bioactive compounds, antioxidant capacity, and pigments, J. Appl. Phycol. 30: 673–683.CrossrefGoogle Scholar

  • Valero, M., M-L. Guillemin, C. Destombe, B. Jacquemin, C.M.M. Gachon, Y. Badis, A.H. Buschmann, C. Camus, and S. Faugeron. 2017. Perspectives on domestication research for sustainable seaweed aquaculture. Persp. Phycol. 4: 33–46.Google Scholar

  • Vásquez, J.A. 2016. The brown seaweeds fishery in Chile. In: (H. Mikkola (ed.) Fisheries and aquaculture in the modern world. INTECH. pp. 123–141.Google Scholar

  • Vásquez, J.A. 2017. Brown seaweeds fishery in Chile: an update of management, regulations, new tools and challenges. International workshop “Cultivation, breeding and domestication of seaweeds – Chile and France experience”, Puerto Varas, Chile.Google Scholar

  • Vásquez, X., A. Gutiérrez, A.H. Buschmann, R. Flores, R., D. Farías & P. Leal. 2014. Evaluation of repopulation techniques for giant kelp Macrocystis pyrifera (Laminariales). Bot. Mar. 57: 123–130.Google Scholar

  • Wells, M.L., P. Potin, J.S. Craigie, J.A. Raven, S.S. Merchant, K.E. Helliwell, A.G. Smith, M.E. Camire and S.H. Brawley. 2017. Algae as nutritional and functional food sources: revisiting our understanding. J. Appl. Phycol. 29: 949–982.CrossrefGoogle Scholar

  • Westermeier, R., D. Patiño, M.I. Piel, I. Maier and D.G. Müller. 2006. A new approach to kelp mariculture in Chile: production of free-floating sporophyte seedlings from gametophyte cultures of Lessonia trabeculata and Macrocystis pyrifera. Aquacult. Res. 37: 164–171.CrossrefGoogle Scholar

  • Westermeier, R., D.J. Patiño, P. Murúa and D.G. Müller. 2011. Macrocystis mariculture in Chile: growth performance of heterosis genotype constructs under field conditions. J. Appl. Phycol. 23: 819–825.CrossrefGoogle Scholar

  • Westermeier, R., D.J. Patiño, P. Murúa, J.C. Quintanilla, J.A. Correa, A.H. Buschmann and I. Barros. 2012. A pilot-scale study of the vegetative propagation and suspended cultivation of the carrageenophyte alga Gigartina skottsbergii in southern Chile. J. Appl. Phycol. 24: 11–20.CrossrefGoogle Scholar

  • Westermeier, R., P. Múrua, D.J. Patiño, L. Muñoz and D.G. Müller. 2016. Holdfast fragmentation of Macrocystis pyrifera (integrifolia morph) and Lessonia berteroana in Atacama (Chile): a novel approach for kelp bed restoration. J. Appl. Phycol. 28: 2969–2977.CrossrefGoogle Scholar

  • Zuñiga-Jara, S., Marín-Riffo, M.C., and C. Bulboa-Contador. 2016. Bioeconomic analysis of giant kelp Macrocystis pyrifera cultivation (Laminariales; Phaeophyceae) in northern Chile. J. Appl. Phycol. 28: 405–416.CrossrefGoogle Scholar

About the article

Carolina Camus

Carolina Camus holds a Master’s degree in Biological Sciences and a Ph.D. degree in Ecology from Pontificia Universidad Católica de Chile. She currently works as Assistant Professor at Centro i~mar & CeBiB, Universidad de Los Lagos. Her scientific expertise focuses in the study of macroalgae, with a main interest in ecological and evolutionary aspects of adaptation to environmental heterogeneity in seaweeds. She has professional experience in project management in the field of renewable energies, focused on cultivation of macroalgae biomass generation and domestication of seaweed for aquaculture.

María del Carmen Hernández-González

María del Carmen Hernández-González holds a Bachelor’s degree in Biological Sciences from the Universidad de la Laguna in Spain and presently has a position at the Universidad de Los Lagos in Chile. Her scientific expertise focuses on red and brown algal cultivation, and her main interest is in the development of laboratory culture and propagation techniques. Her work has been carried out with species like Macrocystis pyrifera, Gigartina skottsbergii, Callophyllis variegata and Laurencia pinnatifida.

Alejandro H. Buschmann

Alejandro H. Buschmann presently is a Full Professor at the Universidad de Los Lagos, obtained his Marine Biology degree at Universidad de Concepción and his Ph.D. degree at Pontificia Universidad Católica de Chile. He has authored more than 100 peer-reviewed papers in international journals and book chapters. His research interest considers seaweed ecology and cultivation, and aquaculture management strategies focusing on integrated multi-trophic aquaculture (IMTA) and other emergent aquaculture environment interaction topics (e.g. antibiotic resistance).


Received: 2018-03-15

Accepted: 2018-11-13

Published Online: 2018-12-20

Published in Print: 2019-06-26


Citation Information: Botanica Marina, Volume 62, Issue 3, Pages 237–247, ISSN (Online) 1437-4323, ISSN (Print) 0006-8055, DOI: https://doi.org/10.1515/bot-2018-0030.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Carolina Camus, Javier Infante, and Alejandro H. Buschmann
Aquaculture, 2019, Volume 502, Page 80

Comments (0)

Please log in or register to comment.
Log in