Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Botanica Marina

Editor-in-Chief: Dring, Matthew J.


IMPACT FACTOR 2018: 0.919
5-year IMPACT FACTOR: 1.336

CiteScore 2018: 1.22

SCImago Journal Rank (SJR) 2018: 0.399
Source Normalized Impact per Paper (SNIP) 2018: 0.672

Online
ISSN
1437-4323
See all formats and pricing
More options …
Volume 62, Issue 4

Issues

Molecular and morphological reappraisal of Spyridiocolax capixabus (Spyridiaceae, Rhodophyta), a rare endemic parasite from Brazil

Daniella Harumi Chen
  • Postgraduate Program “Biodiversidade Vegetal e Meio Ambiente”, Instituto de Botânica, Av. Miguel Estéfano, 3687, São Paulo 04301-012, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luanda Pereira SoaresORCID iD: https://orcid.org/0000-0002-4207-5022 / Mutue Toyota FujiiORCID iD: https://orcid.org/0000-0001-6752-1570
Published Online: 2019-06-12 | DOI: https://doi.org/10.1515/bot-2018-0089

Abstract

The monotypic red algal parasite genus Spyridiocolax was proposed from material from the coast of Espírito Santo to accommodate Spyridiocolax capixabus, endemic from Brazil. The species is rare, and we performed a morphological reappraisal and the first molecular characterization of S. capixabus. Parasite specimens growing on Spyridia clavata were collected in the type locality, Itaoca Beach, Espírito Santo. Spyridiocolax capixabus forms colorless warts on the branches of S. clavata, and the secondary pit connections were described for the first time. Male, female and tetrasporophytic structures were observed growing in the same host plant. The plastid rbcL sequences of parasite and host were identical. A divergence of one nucleotide was found to the nuclear SSU rRNA gene, suggesting that the parasite retains the chloroplast of its host. Both plastidial and nuclear phylogenies supported the close relationship of S. capixabus and S. clavata. The data obtained corroborate other studies with rhodophycean parasites, which show morphological and molecular similarities between parasites and hosts. To maintain the monophyly of the host genus, the transfer of S. capixabus to Spyridia is proposed here on the basis of morphological and molecular evidence. Our study constitutes a starting point for reinvestigating the red algal parasites in Brazil.

This article offers supplementary material which is provided at the end of the article.

Keywords: biodiversity; parasitic red algae; phylogeny; rbcL; SSU rRNA

References

  • Apt, K.E. and K.E. Schlech. 1998. Ululania stellata gen. et sp. nov. (Rhodomelaceae), a new genus and species of parasitic red algae from Hawaii. Phycologia 37: 157–161.CrossrefGoogle Scholar

  • Batters, E.A.L. 1892. Gonimophyllum buffhami: a new marine algae. J. Bot. 30: 65–67.Google Scholar

  • Benson, D.A., M. Cavanaugh, K. Clark, I. Karsch-Mizrachi, D.J. Lipman, J. Ostell and E.W. Sayers. 2013. GenBank. Nucleic Acids Res. 41: 36–42.Google Scholar

  • Blouin, N.A. and C.E. Lane. 2012. Red algal parasites: Models for a life history evolution that leaves photosynthesis behind again and again. Bioessays 34: 226–235.CrossrefWeb of ScienceGoogle Scholar

  • de Queiroz, K. 2012. Biological nomenclature from Linnaeus to the PhyloCode. Bibli. Herpetol. 9: 135–145.Google Scholar

  • de Queiroz, K. and J. Gauthier. 1992. Phylogenetic taxonomy. Annu. Rev. Ecol. Syst. 23: 449–480.CrossrefGoogle Scholar

  • de Queiroz, K. and J. Gauthier. 1994. Toward a phylogenetics system of biological nomenclature. Trends Ecol. Evol. 9: 27–31.CrossrefGoogle Scholar

  • Feldmann, J. and G. Feldmann. 1958. Recherches sur quelques Floridées parasites. Rev. Gen. Bot. 65: 49–128.Google Scholar

  • Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.CrossrefGoogle Scholar

  • Freese, J.L. and C.E. Lane. 2017. Parasitism finds many solutions to the same problems in red algae (Florideophyceae, Rhodophyta). Mol. Biochem. Parasitol. 24: 105–111.Web of ScienceGoogle Scholar

  • Freshwater, D.W. and J. Rueness. 1994. Phylogenetic relationships of some European Gelidium (Gelidiales, Rhodophyta) species, based on rbcL nucleotide sequence analysis. Phycologia 33: 187–194.CrossrefGoogle Scholar

  • Fujii, M.T. and S.M.P.B. Guimarães. 1999. Morphological studies of the parasitic red alga Janczewskia moriformis (Rhodomelaceae, Ceramiales) from Brazil. Phycologia 38: 1–7.CrossrefGoogle Scholar

  • Goff, L.J. 1982. The biology of parasitic red algae. In: (F.E. Round and D.J. Chapman, eds) Progress in Phycological Research. Elsevier Biomedical Press, Amsterdam. pp. 289–369.Google Scholar

  • Goff, L.J. and A.W. Coleman. 1995. Fate of parasite and host organelle DNA during cellular-transformation of red algae by their parasites. Plant Cell 7: 1899–1911.CrossrefGoogle Scholar

  • Goff, L.J., D.A. Moon, P. Nyvall, B. Stache, K. Mangin and G.C. Zuccarello. 1996. The evolution of parasitism in the red algae: molecular comparisons of aldephoparasites and their hosts. J. Phycol. 32: 297–312.CrossrefGoogle Scholar

  • Goff, L.J., J. Ashen and D. Moon. 1997. The evolution of parasites from their hosts: a case study in the parasitic red algae. Evolution 51: 1068–1078.CrossrefGoogle Scholar

  • Guimarães, S.M.P.B. 1993. Morphology and systematics of the red algal parasite Dawsoniocolax bostrychiae (Choreocolacaceae, Rhodophyta). Phycologia 32: 251–258.CrossrefGoogle Scholar

  • Guindon, S., J.-F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk and O. Gascuel. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59: 307–321.Web of ScienceCrossrefGoogle Scholar

  • Guiry, M.D. and G.M. Guiry. 2019. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org.

  • Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95–98.Google Scholar

  • Hörandl, E. 2006. Paraphyletic versus monophyletic taxa–evolutionary versus cladistic classifications. Taxon 55: 564–570.CrossrefGoogle Scholar

  • Joly, A.B. 1966. Centrocerocolax, a new parasitic genus of Rhodophyta. Rickia 2: 73–77.Google Scholar

  • Joly, A.B. and E.C. Oliveira Filho. 1966. Spyridiocolax and Heterodasya two new genera of the Rhodophyceae. Sellowia 18: 115–125.Google Scholar

  • Joly, A.B. and N. Yamaguishi-Tomita. 1967. Dawsoniella bostrychiae: a new parasite of mangrove algae. Sellowia 19: 63–70.Google Scholar

  • Kim, M.-S. and G.-Y. Cho. 2010. A new red algal parasite, Symphyocolax koreana gen. et. sp. nov. (Rhodomelaceae, Ceramiales), from Korea. Algae 25: 105–113.CrossrefGoogle Scholar

  • Kraft, G.T. and I.A. Abbott. 2002. The anatomy of Neotenophycus ichthyosteus gen. et sp. nov. (Rhodomelaceae, Ceramiales), a bizarre red algal parasite from the central Pacific. Eur. J. Phycol. 37: 269–278.CrossrefGoogle Scholar

  • Kurihara, A., T. Abe, M. Tani and A.R. Sherwood. 2010. Molecular phylogeny and evolution of red algal parasites: a case study of Benzaitenia, Janczewskia, and Ululania (Ceramiales). J. Phycol. 46: 580–590.Web of ScienceCrossrefGoogle Scholar

  • Lin, S.M., S. Fredericq and M.H. Hommersand. 2001. Systematics of the Delesseriaceae (Ceramiales, Rhodophyta) based on large subunit rDNA and rbcL sequences, including the Phycodryoideae subfam. nov. J. Phycol. 37: 881–899.CrossrefGoogle Scholar

  • Milne, I., D. Lindner, M. Bayer, D. Husmeier, G. McGuire, D.F. Marshall and F. Wright. 2009. TOPALi v2: a rich graphical interface for evolutionary analyses of multiple alignments on HPC clusters and multi-core desktops. Bioinformatics 25: 126–127.CrossrefWeb of ScienceGoogle Scholar

  • Ng, P.-K., P.-E. Lim and S.-M. Phang. 2014a. Radiation of the red algal parasite Congracilaria babae onto a secondary host species, Hydropuntia sp. (Gracilariaceae, Rhodophyta). PLoS One 9: e0097450.Web of ScienceGoogle Scholar

  • Ng, P.-K., P.-E. Lim, A. Kato and S.-M. Phang. 2014b. Molecular evidence confirms the parasite Congracilaria babae (Gracilariaceae, Rhodophyta) from Malaysia. J. Appl. Phycol. 26: 1287–1300.CrossrefWeb of ScienceGoogle Scholar

  • Oliveira Filho, E.C. 1969. Algas marinhas do sul do estado do Espírito Santo (Brasil). I – Ceramiales. Bol. Fac. Filos. Cienc. Let. Univ. São Paulo (Botânica 26) 343: 1–277.Google Scholar

  • Oliveira Filho, E.C. and Y. Ugadim. 1973. Levringiella polysiphoniae a new species of parasitic red algae (Rhodophyta-Rhodomelaceae) from Brazil. Bol. Bot. Univ. São Paulo 1: 95–99.Google Scholar

  • Posada, D. and K.A. Crandall. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817–818.CrossrefGoogle Scholar

  • Preuss, M. and G.C. Zuccarello. 2014. What’s in a name? Monophyly of genera in the red algae: Rhodophyllis parasitic sp. nov. (Gigartinales, Rhodophyta): a new red algal parasite from New Zealand. Algae 29: 279–288.CrossrefGoogle Scholar

  • Preuss, M. and G.C. Zuccarello. 2018. Three new red algal parasites from New Zealand: Cladhymenia oblongifoliaphila sp. nov. (Rhodomelaceae), Phycodrys novae-zelandiaephila sp. nov. (Delesseriaceae) and Judithia parasitica sp. nov. (Kallymeniaceae). Phycologia 57: 9–19.CrossrefWeb of ScienceGoogle Scholar

  • Preuss, M., W.A. Nelson and G.C. Zuccarello. 2017. Red algal parasites: a synopsis of described species, their hosts, distinguishing characters and areas for continued research. Bot. Mar. 60: 13–25.Web of ScienceGoogle Scholar

  • Reinsch, P.F. 1875. Contributiones ad algologiam et fungologiam. Vol. I. T.O. Welgel, Lipsiae. pp. 422.Google Scholar

  • Ronquist, F., M. Teslenko, P. Van der Mark, D.L. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M.A. Suchard and J.P. Huelsenbeck. 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61: 539–542.Web of ScienceCrossrefGoogle Scholar

  • Saunders, G.W. and G.T. Kraft. 1994. Small-subunit rRNA gene sequences from representatives of selected families of the Gigartinales and Rhodymeniales (Rhodophyta). 1. Evidence for the Plocamiales ord. nov. Can. J. Bot. 72: 1250–1263.CrossrefGoogle Scholar

  • Setchell, W.A. 1918. Parasitism among the red algae. Proc. Am. Philos. Soc. 57: 155–172.Google Scholar

  • Thiers, B. 2019. Index Herbariorum. A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. http://sweetgum.nybg.org/science/ih/.

  • Vergés, A., C. Izquierdo and M. Verlaque. 2005. Rhodymeniocolax mediterraneus sp. nov. (Rhodymeniales, Rhodophyta), parasitic on Rhodymenia ardissonei from the western Mediterranean Sea. Phycologia 44: 510–516.CrossrefGoogle Scholar

  • West, J.A. and H.P. Calumpong. 1988. Dawsoniocolax bostrychiae (Choreocolacaceae, Gigartinales), an alloparasitic red alga new to Australia. Phycologia 27: 463–468.CrossrefGoogle Scholar

  • Wynne, M.J. and F. Scott. 1989. Pitycolax, a new genus of adelphoparasitic red algae from lle Amsterdam, Southern Indian Ocean. Cryptogam. Algol. 10: 23–32.Google Scholar

  • Yoneshigue, Y. 1985. Taxonomie et ecologie des algues marines dans la region de Cabo Frio (Rio de Janeiro, Brasil). Unpublished doctoral thesis, L’Universite D’Aix-Marseille II, Merseille, France. pp. 466.Google Scholar

  • Yoneshigue, Y. and E.C. Oliveira Filho. 1984. Algae from Cabo Frio upwelling area. 2. Gelidiocolax pustulata (Gelidiaceae, Rhodophyta): an unusual new putative parasitic species. J. Phycol. 20: 440–443.CrossrefGoogle Scholar

  • Zuccarello, G.C. and J.A. West. 1994. Host specificity on the red algal parasites Bostrychiocolax australis gen. et sp. nov. and Dawsoniocolax bostrychiae (Choreocolacaceae, Rhodophyta). J. Phycol. 30: 137–146.CrossrefGoogle Scholar

  • Zuccarello, G.C., D. Moon and L.J. Goff. 2004. A phylogenetic study of parasitic genera placed in the family Choreocolacaceae (Rhodophyta). J. Phycol. 40: 937–945.CrossrefGoogle Scholar

About the article

Daniella Harumi Chen

Daniella Harumi Chen graduated in Biological Sciences at the Universidade Presbiteriana Mackenzie. She has worked as a technician at the Laboratory of Marine Phycology, Institute of Botany, São Paulo. She has experience in the area of Molecular Biology with emphasis on taxonomy and DNA barcoding of marine macroalgae. She received her Master’s degree in Plant Biodiversity and Environment with studies on the holotypes of Ceramiales (Rhodophyta) from Brazil housed at SP and SPF herbaria.

Luanda Pereira Soares

Luanda Pereira Soares is a postdoctoral researcher at the Nucleus for Research in Phycology, Institute of Botany, São Paulo, Brazil. She received her PhD in Plant Biodiversity and Environment in 2015 at the same institution, and since then, she has been developing studies related to floristic surveys of Rhodophyta, using classical taxonomy and molecular tools. At present, her research includes taxonomy and molecular phylogeny of marine macroalgae, focusing on reassessment of type specimens, endemic and rare marine algae occurring along the Brazilian coast.

Mutue Toyota Fujii

Mutue Toyota Fujii is a Scientific Researcher at the Nucleus for Research in Phycology, Institute of Botany, São Paulo, Brazil. She received her Master and PhD degrees in Plant Biology from the São Paulo State University for her studies on morphological, chemical and cytogenetical approaches on Laurencia s.l. (Rhodophyta) from Brazil. Currently, she is a coordinator of the Postgraduate Program in Plant Biodiversity and Environment (PPG-IBt) and her area of activity is taxonomy, phylogeny, phylogeography and biogeography of marine macroalgae.


Received: 2018-09-30

Accepted: 2019-04-30

Published Online: 2019-06-12

Published in Print: 2019-08-27


Citation Information: Botanica Marina, Volume 62, Issue 4, Pages 345–353, ISSN (Online) 1437-4323, ISSN (Print) 0006-8055, DOI: https://doi.org/10.1515/bot-2018-0089.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in