Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Botanica Marina

Editor-in-Chief: Dring, Matthew J.

IMPACT FACTOR 2018: 0.919
5-year IMPACT FACTOR: 1.336

CiteScore 2018: 1.22

SCImago Journal Rank (SJR) 2018: 0.399
Source Normalized Impact per Paper (SNIP) 2018: 0.672

See all formats and pricing
More options …
Volume 62, Issue 5


The seaweed resources of the Philippines

Gavino C. Trono Jr.
  • Corresponding author
  • Marine Science Institute, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Danilo B. Largo
Published Online: 2019-09-02 | DOI: https://doi.org/10.1515/bot-2018-0069


This review paper presents information on the production status of economically important seaweed species in the Philippines, new culture technologies for Halymenia durvillei and also an examination of the present but limited use of Sargassum. The country recorded its highest production volume of seaweeds (mainly eucheumatoids) in 2011 amounting to 1,840,832 metric tons (fresh weight). In the subsequent years, the Philippines recorded a steady decline in production which can be attributed to epiphytism, loss of genetic diversity due to the culture methods used (i.e. vegetative propagation), political unrest in the main farming areas of the Southern Philippines, and the frequent occurrence of typhoons. The more than 200,000 ha of farmable areas along available coastlines remain to be tapped and evaluated in order to determine which areas are suitable for seaweed farming. The haphazard harvesting of Sargassum led to the proclamation of Fisheries Order No. 250 which prohibits harvesting of Sargassum. Exploitation of Gelidiela acerosa remains a concern as there is no currently available culture technology for the species. The lack of comprehensive records on Philippine seaweed production needs to be addressed and its diverse algal resources remain to be explored.

Keywords: aquaculture; cultivation; Philippine seaweed mariculture; seaweed biodiversity; seaweed production


  • AAT Bioquest, http://aatbio.com, accessed May 24, 2018.

  • Alibaba, http://alibaba.com, accessed May 12, 2018.

  • Ang, P.O. 1985. Regeneration studies of Sargassum siliquosum J. Ag. and S. paniculatum J. Ag. (Phaeophyta, Sargassaceae). Bot. Mar. 28: 231–235.Google Scholar

  • Ang, P.O., S.M. Leung and M.M. Choi. 2014. A verification reports on marine algal species from the Philippines. Philos. J. Sci. 142: 5–49.Google Scholar

  • Ariede, M.B., T.M. Candido, A.L.M. Jacome, M.V.R. Velasco, J.C.M. de Carvalho and A.R. Baby. 2017. Cosmetic attributes of algae-a review. Algal Res. 25: 483–487.CrossrefGoogle Scholar

  • Arugay, A.N.B. and A.R. Caparanga, 2009. Reusability of Sargassum cristaefolium in sorption-desorption of Pb2+, Cu2+ and Ni2+ in batch and fixed-bed systems. World Appl. Sci. J. 6: 1326–1334.Google Scholar

  • Baleta, F.N., J.M. Bolaños, O.C. Ruma, A.N. Baleta and J.D. Cairel. 2017. Phytochemicals screening and antimicrobial properties of Sargassum oligocystum and Sargassum crassifolium extracts. J. Med. Plants Stud. 5: 382–387.Google Scholar

  • Barut, N.C., M.C. Santos and M.D. Garces. 1997. Overview of Philippine Marine Fisheries. In: (G.T. Silvestre and D. Pauly, eds) Status and management of tropical coastal fisheries in Asia. RM Conf. Proc. 53. Asian Development Bank, Mandaluyong City, Philippines and International Center for Living Aquatic Resources Management, Makati City, Philippines. p. 208.Google Scholar

  • Battacharyya, D., M.Z. Babgohari, P. Rathor and B. Prithiviraj. 2015. Seaweed extracts as biostimulants. Sci. Hort. 196: 39–48.CrossrefGoogle Scholar

  • Becks, L. and A.F. Agrawal. 2012. The evolution of sex is favoured during adaptation to new environments. PLoS Biol. 10: e1001317.CrossrefGoogle Scholar

  • Bedoux, G., K. Hardouin, A.S. Burlot and N. Bourgougnon. 2014. Bioactive components from seaweeds: Cosmetic application and future applications. In: (B. Nathalie, ed) Advances in botanical research. Elsevier, London. pp. 345–378.Google Scholar

  • Bermejo, R.R., J.M. Alvárez-Pez, F.G. Acién Fernández and E.M. Grima. 2002. Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum. J. Biotech. 93: 73–85.CrossrefGoogle Scholar

  • BFAR. 2017. Online Information System. https://www.bfar.da.gov.ph/.

  • Bixler, H.J. and H. Porse. 2010. A decade of change in the seaweed hydrocolloids industry. J. Appl. Phycol. 23: 321–335.Google Scholar

  • Bolaños, J.M., F.N. Baleta and J.D. Cairel. 2017. Antimicrobial properties of Sargassum spp. (Phaeophyta) against selected aquaculture pathogens. Int. J. Curr. Microbiol. Appl. Sci. 6: 1024–1037.CrossrefGoogle Scholar

  • Borines, M.G., R.L. de Leon and J.L. Cuello. 2013. Bioethanol production from the macroalgae Sargassum spp. Bioresour. Technol. 138: 22–29.CrossrefGoogle Scholar

  • Briones, A.V., W.O. Ambal, E.C. Monroyo, M.A. Villanueva, R.R. Estrella and E.A. Lanto. 2000. USP grade lambda-like carrageenan from Halymenia durvillei Bory de Sainte Vincent (Short Communication). Philos. J. Sci. 129: 15–17.Google Scholar

  • Buschmann, A.H., J.A. Correa, R. Westermeier, M. del C. Hernández-González and R. Norambuena. 2001. Red algal farming in Chile: a review. Aquaculture 194: 203–220.CrossrefGoogle Scholar

  • Buschmann, A.H., C. Camus, J. Infante, A. Neori, A. Israel, M.C. Hernandez-Gonzalez, S.V. Pereda, J.L. Gomez-Pinchetti, A. Goldberg, N. Tadmor-Shalev and A.T. Critchley. 2017. Seaweed production: overview on the global state of exploitation, farming and emerging research activity. Eur. J. Phys. 52: 391–406.Google Scholar

  • Calumpang, S.M.F. and M.M. Navasero. 2017. Chemical basis for repellency of Sargassum cinctum J. Agardh (Sargassaceae) against Asian corn borer, Ostrinia furnacalis (Guenee) (Lepidoptera: Crambidae). J. ISSAAS 23: 103–113.Google Scholar

  • Campbell, R. and S. Hotchkiss. 2017. Carrageenan industry market overview. In: (A.Q. Hurtado, A.T. Critchley and I.C. Neish, eds) Tropical seaweed farming trends, problems and opportunities. Focus on Kappaphycus and Eucheuma of commerce. Springer, Basel, Switzerland. pp. 193–205.Google Scholar

  • Capinpin, E.C. Jr. 2015. Growth and survival of sea urchin (Tripneustes gratila) fed with different brown algae in aquaria. Int. J. Fauna. Biol. Stud. 2: 56–60.Google Scholar

  • Central Visayas Seaweed Farming Technoguide. Caulerpa lentillifera J. Agardh. Undated. Central Visayas Technology Packaging for Countryside Development/Technical Committee for Caulerpa Farming. pp. 27.Google Scholar

  • Chaoroensiddhi, S., M.A. Conlon, C.M.M. Franco and W. Zhang. 2017. The development of seaweed0-derived bioactive compounds for use as prebiotics and nutraceuticals using enzyme technologies. Trends Food Sci. Technol. 70: 20–33.CrossrefGoogle Scholar

  • Coeteau, C. and L. Coiffard. 2016. Seaweed applications in cosmetics. In: (J. Fleurence and I. Levine, eds) Seaweed in health and disease prevention. Elsevier Academic Press, London. pp. 423–441.Google Scholar

  • Cofrades, S., J. Benedi, A. Garcimartin, F.J. Sanchez-Muniz and F. Jimenez-Colmenero. 2017. A comprehensive approach to formulation of seaweed-enriched meat products: from technological development to assessment of healthy properties. Food Res. Int. 99: 1084–1094.CrossrefGoogle Scholar

  • Cornish, M.L. and D.J. Garbary. 2010. Antioxidants from macroalgae: potential applications in human health and nutrition. Algae 25: 155–171.CrossrefGoogle Scholar

  • Crouch, I.J. and J. Van Staden. 1991. Evidence for rooting factors in a seaweed concentrate prepared from Ecklonia maxima. J. Plant Physiol. 137: 319–322.CrossrefGoogle Scholar

  • Dakay, B.U. 1992. The state of the seaweed industry of the Philippines. In: (H.P. Calumpong and E.G. Meñez, eds) Proceedings of the 2nd RP-USA phycology symposium/workshop. Philippine Council for Aquatic and Marine Research and Development (PCARD), Los Baños, Laguna, Philippines. pp. 23–27.Google Scholar

  • Erulan, V., P. Soundarapandian, G. Thirumaran and G. Ananthan. 2009. Studies on the effect of Sargassum polycystum (C. Agardh, 1824) extract on the growth and biochemical composition of Cajanus cajan (L.) Mill sp. Am Eurasian J. Agric. Environ. Sci. 6: 392–399.Google Scholar

  • Fenoradosoa, T.A., C. Laroche, A. Wadouachi, V. Dulong, L. Pictan, P. Andriamadio and P. Michaud. 2009. Highly sulphated galactan from Halymenia durvillei (Halymeniales, Rhodophyta), a red seaweed of Madagascar marine coasts. Int. J. Biol. Macromol. 45: 140–145.CrossrefGoogle Scholar

  • Fenoradosoa, T.A., C. Laroche, C. Delattre, V. Dulong, D. Le Cerf, L. Picton and P. Michaud. 2012. Rheological behavior and non-enzymatic degradation of a sulfated galactan from Halymenia durvillei (Halymeniales, Rhodophyta). Biotechnol. Appl. Biochem. 167: 1303–1313.CrossrefGoogle Scholar

  • Filippo-Herrera, D.A., M. Munoz-Ochoa and R.M. Hernandez-Herrera. 2017. Biostimulant activity of individual and blended seaweed extracts on the germination and growth of the mung bean. J. Appl. Phycol. 31: 1–13.Google Scholar

  • Fixen, P.E. and F.B. West. 2002. Nitrogen fertilizers: meeting contemporary challenges. Ambio 31: 169–176.CrossrefGoogle Scholar

  • Fleurence, J. 2016. Seaweeds as food. In: (J. Fleurence and I. Levine, eds) Seaweed in health and disease prevention. Elsevier Academic Press, London. pp. 149–167.Google Scholar

  • Fortes, M.D. 1993. Assessment of the natural stocks of Gelidiella acerosa (Forssk.) Feld et Hamel in Mantigue Is., Camiguin, Southern Philippines. In: (H.P. Calumpong and E. Meñez, eds) Proceedings of the 2nd RP-USA phycology symposium/workshop. Philippine Council for Aquatic and Marine Research and Development, Los Baños, Laguna, Philippines. pp. 247–256.Google Scholar

  • FreeGrow™, https://haverson.com.ph/index/agri_products/freegrow/, accessed December 10, 2018.

  • Freile-Pelegrin, Y., Z.A. Azamar and D. Robledo. 2011. Preliminary characterization of carrageenan from the red seaweed Halymenia floresii. J. Aquat. Food Prod. Technol. 20: 73–83.CrossrefGoogle Scholar

  • Ganesan, M., S. Thiruppathi, K. Eswaran, C.R.K. Reddy and B. Jha. 2009. Cultivation of Gelidiella acerosa in the open sea on southeastern coast of India. Mar. Ecol. Prog. Ser. 382: 49–57.CrossrefGoogle Scholar

  • Ganzon-Fortes, E.T. 1997a. Influence of tidal location on morphology, photosynthesis and pigments of agaraophyte, Gelidiella acerosa, from Norther Philippines. J. Appl. Phys. 9: 525–532.Google Scholar

  • Ganzon-Fortes, E.T. 1997b. Diurnal and diel patterns in the photosynthetic performance of the agarophyte Gelidiella acerosa. Bot. Mar. 40: 93–100.Google Scholar

  • Gaurav, R. 2015. Seaweeds: a sustainable feed source for livestock and aquaculture. In: (B.K. Tiwari and D.J. Troy, eds) Seaweed sustainability: food and non-food applications. Academic Press, London. pp. 389–420.Google Scholar

  • Gaurav, N., S. Sivasankari, G.S. Kiran, A. Ninawe and J. Selvin. 2017. Utilization of bioresources for sustainable biofuels: a review. Renew. Sust. Energ. Rev. 73: 205–2014.CrossrefGoogle Scholar

  • Hafting, J.T. and J.S. Craigie. 2015. Prospects and challenges for industrial production of seaweed bioactives. J. Phycol. 51: 821–837.CrossrefGoogle Scholar

  • Harley, C.D.G., K.M. Anderson, K.W. Demes, J.P. Jorve, R.B. Kordas, T.A. Coyle and M.H. Graham. 2012. Effects of climate change on global seaweed communities. J. Phycol. 48: 1064–1078.CrossrefGoogle Scholar

  • Hurtado, A.Q. and R.A. Ragaza. 1999. Sargassum Studies in Currimao, Ilocos Norte, Northern Philippines I. Seasonal Variations in the Biomass of Sargassum carpophyllum J. Agardh, Sargassum ilicifolium (Turner) C. Agardh and Sargassum siliquosum J. Agardh (Phaeophyta, Sargassaceae). Bot. Mar. 42: 321–325.Google Scholar

  • Hurtado, A.Q., I.C. Neish and A.T. Critchley. 2015. Developments in production technology of Kappaphycus in the Philippines: more than four decades of farming. J. Appl. Phycol. 27: 1945–1961.CrossrefGoogle Scholar

  • Kawsar, S.M.A., F. Yuki, R. Matsumoto, H. Yasumitsu and Y. Ozeki. 2011. Protein R-phycoerythrin from marine red alga Amphiroa anceps: extraction, purification and characterization. Phyto. Balcanica 17: 347–354.Google Scholar

  • Kim, J.K., C. Yarish, E.K. Hwang, M. Park and Y. Kim. 2017. Seaweed aquaculture: cultivation technologies, challenges and its ecosystem services. Algae 32: 1–13.CrossrefGoogle Scholar

  • Kumari, R., I. Kaur and A.K. Bhatnagar. 2011. Effects of aqueous extract of Sargassum johnstonii Setchell and Gardner on growth, yield and quality of Lycopersicon esculentum Mill. J. Appl. Phycol. 23: 623–633.CrossrefGoogle Scholar

  • Largo, D.B. and M. Ohno. 1992. Phenology of two species of brown seaweeds, Sargassum myriocystum J. Agardh and Sargassum siliquosum J. Agardh (Sargassaceae, Fucales) in Liloan, Cebu in central Philippines. Bull. Mar. Sci. Fish. Kochi Univ. 12: 17–27.Google Scholar

  • Largo, D.B., I.K. Chung, S.-M. Phang, G.S. Gerung and C.F.A. Sondak. 2017. Impacts of climate change on Eucheuma-Kappaphycus farming. In: (A.Q. Hurtado and A.T. Critchley, eds) Tropical seaweed farming trends, problems and opportunities. Springer. pp. 121–129.Google Scholar

  • Luhan, M.R. and H. Sollestra. 2010. Growing the reproductive cells (carpospores) of the seaweed, Kappaphycus striatum in the laboratory until outplanting in the field and maturation to tetrasporophyte. J. Appl. Phycol. 22: 579–585.CrossrefGoogle Scholar

  • Makkar, H.P.S., G. Tran, V. Heuzé, S. Giger-Reverdin, M. Lessire, F. Lebas and P. Ankers. 2015. Seaweeds for livestock diets: a review. Anim. Feed Sci. Technol. 212: 1–17.Google Scholar

  • Malairaj, S., S.V.B. Gopal, P. Perumal and R. Ramasamy. 2016. Qualitative and quantitative determination of R-phycoerythrin from Halymenia floresia (Clemente) C. Agardh by polyacrylamide gel using electrophoretic elution technique. J. Chromatogr. 1454: 120–126.CrossrefGoogle Scholar

  • Manapat, A.L. 1969. Alginic acid from some Philippine brown algae. Acta Manilana 5: 36–45.Google Scholar

  • McDermid, K.J. 2002. Phenology and spore germination in a Halymenia population at Mahai’ula Bay, Hawaii. In: (I.A. Abbott and K. McDermid, eds) Taxonomy of economic seaweeds with reference to some Pacific species VIII. pp. 279–287.Google Scholar

  • Monagail, M.M., L. Cornish, L. Morrison, R. Araújo and A.T. Critchley. 2017. Sustainable harvesting of wild seaweed resources. Eur. J. Phys. 52: 271–390.Google Scholar

  • Montaño, N.E., R.L. Veroy and G.J.B. Cajipe. 1987. Studies on the binding of heavy metals by algal polysaccharides II: the binding of lead, cadmium and mercury by Sargassum polycystum C. Agardh. Philos. J. Sci. Monog. 17: 37–42.Google Scholar

  • Montaño, N.E., K.N. Bongon and C.M. Advincula. 2015. Seaweed utilization among Philippine coastal communities. Philippine Council for Agriculture, Aquatic, and Natural Resources Research and Development. Marine Science Institute, University of the Philippines Diliman. pp. 5–10.Google Scholar

  • Montes Jr., H.R. 1993. Temporal distribution and phenology of Sargassum population in Maysolong Reef, Eastern Philippines. Proc. RP-USA Phycol. Symp. Workshop 2: 127–144.Google Scholar

  • Mooney, P.A. and J. van Staden. 1987. Tentative identification of cytokinins in Sargassum heterophyllum (Phaeophyceae). Bot. Mar. 30: 323–325.Google Scholar

  • Moseley, C.M. 1990. The effect of cultivation conditions on the yield and quality of carrageenans in Chondrus crispus. In: (I. Akatsuka, ed) Introduction to applied phycology. SPB Academic Publishings bv The Hague, The Netherlands, pp. 565–574.Google Scholar

  • Navarro, D.M.A.F., P.C.B. da Silva, M.F.R. da Silva, T.H. Napoleão and P.M.G. Paiva. 2013. Larvicidal activity of plant and algae extracts, essential oils and isolated chemical constituents against Aedes aegypti. Nat. Prod. J. 3: 268–291.Google Scholar

  • Neish, I.A., M. Sepulveda, A.Q. Hurtado and A.T. Critchley. 2017. Reflections on the commercial development of eucheumatoid seaweed farming. In: (A.Q. Hurtado and A.T. Critchley, eds), Tropical seaweed farming trends, problems and opportunities. Springer. pp. 1–27.Google Scholar

  • Neori, A., M. Shpigel, L. Guttman and A. Israel. 2017. The development of polyculture and integrated multi-trophic aquaculture (IMTA) in Israel: a review. Isr. J. Aquacult-Bamid. 306: 116–126.Google Scholar

  • Nisizawa, K. 1979. Pharmaceutical studies on marine algae in Japan. In: (H.A. Hoppe, T. Levring and Y. Tanaka, eds), Marine algae in pharmaceutical science. Walter de Gruyter, Berlin/New York. pp. 243–266.Google Scholar

  • Norton, T.A. 1981. Gamete expulsion and release in Sargassum muticum. Bot. Mar. 24: 465–470.Google Scholar

  • Oppliger, L.V., P. von Dassow, S. Bouchemousse, M. Robuchon, M. Valero, J.A. Correa. S. Mauger and C. Destombe. 2014. Alteration of sexual reproduction and genetic diversity in the kelp species Laminaria digitata at the southern limit of its range. PLoS One 9: e102518.CrossrefGoogle Scholar

  • Ortiz, A.T. and G.C. Trono. 2000. Growth and reproductive pattern of intertidal and subtidal Sargassum (Sargassaceae, Fucales) populations in Bolinao, Pangasinan. Sci. Dil. 12: 45–50.Google Scholar

  • Philippine Fisheries Profile. 2015. Bureau of Fisheries and Aquatic Resources, Department of Agriculture, Republic of the Philippines. pp. 38.Google Scholar

  • Pimentel, D. 1996. Green revolution agriculture and chemical hazards. Sci. Total Environ. 188: S86–S98.CrossrefGoogle Scholar

  • Porse, H. and B. Rudolph. 2017. The seaweed hydrocolloid industry: 2016 updates, requirements, and outlook. J. Appl. Phycol. 29: 2187–2200.CrossrefGoogle Scholar

  • Posadas, B.C. 1998. An economic and social analysis of the seaweeds industry in selected areas in the Philippines. Asian Fisheries Social Science Research Network Research Report. University of the Philippines in the Visayas, Iloilo City/International Center for Living Aquatic Resources Management, Makati, Metro Manila, Philippines. pp. 64.Google Scholar

  • Rebours, C., E. Marinho-Soriano, J.A. Zertuche-González, L. Hayashi, J.A.Vásquez, P. Kradolfer, G. Soriano, R. Ugarte, M.H. Abreu and I. Bay-Larsen. 2014. Seaweeds: an opportunity for wealth and sustainable livelihood for coastal communities. J. Appl. Phycol. 26: 703–716.Google Scholar

  • Rollon, R.N., M.S. Samson, M.Y. Roleda, K.G. Arano, M.W.B. Vergara and W.Y. Licuanan. 2003. Estimating biomass from the cover of Gelidiella acerosa along the coasts of the Eastern Philippines. Bot. Mar. 46: 497–502.Google Scholar

  • Roohinejad, S., M. Koubaa, F.J. Barba, S. Saljoughian, M. Amid and R. Greiner. 2017. Applications of seaweed to develop new food products with enhanced shelf-life, quality and health related beneficial properties. Food Res. Int. 99: 1066–1083.CrossrefGoogle Scholar

  • Roze, D. 2012. Disentangling the benefits of sex. PLoS Biol. 10: e1001321.CrossrefGoogle Scholar

  • Samonte, G.P.B. 2017. Economics of Kappaphycus spp. seaweed farming with special reference to the Central Philippines. In: (A.Q. Hurtado, A.T. Critchley and I.C. Neish, eds) Tropical seaweed farming trends, problems and opportunities. Focus on Kappaphycus and Eucheuma of commerce. Springer. pp. 147–154.Google Scholar

  • Savci, S. 2012. Investigation of effect of chemical fertilizers on environment. APCBEE Procedia 1: 287–292.CrossrefGoogle Scholar

  • Seaweed Industry Association of the Philippines, 2017. http://www.siap-org.com, accessed May 16, 2018.

  • Serrano Jr., A.E., R.S. Declarador and B.L.M. Tumbokon. 2015. Proximate composition and apparent digestibility coefficient of Sargassum spp. meal in the Nile tilapia, Oreochromis niloticus. ABAH Bioflux 7: 159–168.Google Scholar

  • Silva, P.C., E.G. Meñez and R.L. Moe. 1987. Catalogue of the benthic marine algae of the Philippines, Smithsonian Contributions to the Marine Sciences No. 27. Smithsonian Institution Press, Washington, D.C., U.S.A. pp. 179.Google Scholar

  • Stirk, W.A., D. Tarkowska, V. Turecova, M. Strnad and J. Van Staden. 2014. Abscisic acid, gibberellins and brassinosteroids in Kelpak®, a commercial seaweed extract made from Ecklonia maxima. J. Appl. Phycol. 26: 561–567.CrossrefGoogle Scholar

  • Tridge, https://www.tridge.com/intelligences/caulerpa-seaweed/production, accessed May 12, 2018.

  • Trono Jr., G.C. 1986. Seaweed culture in the Asia-Pacific region. RAPA publication 1987/8. Regional Office for Asia and the Pacific (RAPA), Food and Agriculture Organization of the United Nations, Bangkok, Thailand. pp. 41.Google Scholar

  • Trono Jr., G.C. 1988. Manual on seaweed culture: 2. Pond culture of Caulerpa and 3. Pond culture of Gracilaria. ASEAN/SF/-88/Manual No. 3. ASEAN/UNDP/FAO Regional Small-scale Coastal Fisheries Development Project, Manila, Philippines. pp. iii–20.Google Scholar

  • Trono Jr., G.C. 1990. A review of the production of tropical species of economic seaweeds. ASEAN/UNDP/FAO Regional Seafarming Development and Demonstration Project, Cebu, Philippines. pp. 1–32.Google Scholar

  • Trono Jr., G.C. 1997. Halymenia durvillei. Field guide and atlas of the seaweed resources of the Philippines. Bookmark, Inc. Makati City. pp. 185–186.Google Scholar

  • Trono Jr., G.C. 1998. Seaweed resources of the Philippines. In: (Critchley, A.T., M. Ohno, D.B. Largo and R. Gillespie, eds) The seaweed resources of the world. JICA, Kanagawa, Japan. pp. 47–61.Google Scholar

  • Trono Jr., G.C. 1999. Diversity of the seaweed flora of the Philippines and its utilization. Hydrobiologia. 398: 1–6Google Scholar

  • Trono Jr., G.C. 2010. A Primer on the land-based culture of Halymenia durvillei Bory de Saint Vincent (Rhodophyta). Philippine Council for Aquatic and Marine Research and Development. Marine Science Institute, University of the Philippines Diliman. pp. 4–5.Google Scholar

  • Trono Jr., G.C. 2014. Mariculture of the Red Algae Halymenia durvillei Bory de Saint Vincent: Techniques from spores to sea outplanting. Quezon City: Bureau of Agricultural Research, Department of Agriculture. pp. vii–10.Google Scholar

  • Trono, G.C. and G.L. Tolentino. 1993. Studies on the management of Sargassum (Fucales, Phaeophyta) bed Bolinao, Pangasinan. Kor. J. Phycol. 8: 249–257.Google Scholar

  • Tseng, C.K. and C.F. Chang. 1984. Chinese seaweeds in herbal medicine. Hydrobiologia 116: 152–154.Google Scholar

  • Tsuji, R.F., K. Hoshino, Y. Noro, N. M. Tsuji, T. Kurokawa, T. Masuda, S. Akira and B. Nowak. 2003. Suppression of allergic reaction by lambda-carrageenan: toll like receptor–dependent and independent modulation of immunity. Clin. Exp. Allergy 33: 249–258.CrossrefGoogle Scholar

  • Tupas, L.M. and N.E. Montaño. 1987. Effects of aqueous alkaline extracts from Philippine seaweeds as foliar spray on crops. Philipp. J. Sci. 17: 29–36.Google Scholar

  • Ungson, J.R. 2003. Feeding of abalone juveniles with two species of Sargassum (Sargassum cristaefolium and Sargassum polycystum). Philipp. J. Sci. 132: 33–38.Google Scholar

  • Valderrama, D., J. Cai, N. Hishamunda, N. Ridler, I.C. Neish, A.Q. Hurtado, F.E. Msuya, M. Krishnan, R. Narayanakumar, M. Kronen, D. Robledo, E. Gasca Leyva and J. Fraga. 2015. The economics of Kappaphycus seaweed cultivation in developing countries: a comparatice analysis of farming system. Aquacult. Econ. Manag. 19: 251–277.CrossrefGoogle Scholar

  • Valentina, J., T.V. Poonguzhali, J. Laali and L.L. Nisha. 2015. Mosquito larvicidal and pupicidal activity of seaweed extracts against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. Int.l J. Mosq. Res. 2: 54–59.Google Scholar

  • Valero, M., M. Guillemin, C. Detombe, B, Jacquemin, C.M.M. Gachon, Y. Badis, A.H. Buschmann, C. Camus and S. Faugeron. 2017. Perspectives on domestication research for sustainable seaweed aquaculture. Perspec. Phycol. 4: 33–46.CrossrefGoogle Scholar

  • Wang, H.D., X.C. Li, D.J. Lee and J.S. Chang. 2017. Potential biomedical applications of marine algae. Biores. Technol. 244: 1407–1415.CrossrefGoogle Scholar

  • White, W.L. and P. Wilson. 2015. World seaweed utilization. In: (B.K. Tiwari and D.J. Troy, eds) Seaweed sustainability: food and non-food applications. Academic Press, London. p. 7.Google Scholar

  • World Register of Marine Species, http://www.marinespecies.org, accessed April 10, 2018.

  • Xie, X., G. Wang, G. Pan, J. Sun and J. Li. 2014. Development of oogonia of Sargassum horneri (Fucales, Heterokontophyta) and concomitant variations in PSII photosynthetic activities. Phycologia 53: 10–14.CrossrefGoogle Scholar

  • Zaneveld, J.S. 1959. The utilization of marine algae in tropical South and East Asia. Econ. Bot. 13: 89–131.CrossrefGoogle Scholar

  • Zeraatkar, A.K., H. Ahmadzadeh, A.F. Talebi, N.R. Moheimani and M.P. McHenry. 2016. Potential use of algae for heavy bioremediation, a critical review. J. Environ. Manage. 181: 817–831.CrossrefGoogle Scholar

  • Zhang, W., D.J. Chapman, B.O. Phinney, C.R. Spray, H. Yamane and N. Takahashi. 1991. Identification of cytokinins in Sargassum muticum (Phaeophyta) and Porphyra perforata (Rhodophyta). J. Phycol. 27: 87–91.CrossrefGoogle Scholar

  • Zhao, Z., F. Zhao, J. Yao, J. Lu, P.O. Ang and D. Duan. 2008. Early development of germlings of Sargassum thunbergii (Fucales, Phaeophyta) under laboratory conditions. J. Appl. Phycol. 20: 925–931.CrossrefGoogle Scholar

  • Zodape, S.T., V.J. Kawarkhe, J.S. Patolia and A.D. Warade. 2008. Effect of liquid seaweed fertilizer on yield and quality of okra (Abelmoschus sculentus L.). J. Sci. Ind. Res. 67: 1115–1117.Google Scholar

About the article

Gavino C. Trono Jr.

Gavino C. Trono, Jr., is a Professor Emeritus at the University of the Philippines and was conferred the rank of National Scientist in 2014 by the Republic of the Philippines. He has continued working on seaweed biodiversity and improving farming potential of important seaweed resources of the Philippines. His pilot work on culture technology of Halymenia durvillei is undergoing patent licensing. His current project is on biodiversity and conservation of Sargassum through managed harvesting.

Danilo B. Largo

Danilo B. Largo finished his PhD in Aquatic Environmental Science at Kochi University, Japan in 1998. Upon his return to the Philippines, he went back to University of San Carlos (Cebu City, Philippines) where he worked as a faculty member, then as Chair of Biology Department until 2008. Today, he is the university’s Research Director and Manager of the Innovation and Technology Support Office.

Received: 2018-07-11

Accepted: 2019-08-14

Published Online: 2019-09-02

Published in Print: 2019-09-25

Citation Information: Botanica Marina, Volume 62, Issue 5, Pages 483–498, ISSN (Online) 1437-4323, ISSN (Print) 0006-8055, DOI: https://doi.org/10.1515/bot-2018-0069.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in