Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Botanica Marina

Editor-in-Chief: Dring, Matthew J.

IMPACT FACTOR 2018: 0.919
5-year IMPACT FACTOR: 1.336

CiteScore 2018: 1.22

SCImago Journal Rank (SJR) 2018: 0.399
Source Normalized Impact per Paper (SNIP) 2018: 0.672

See all formats and pricing
More options …
Volume 62, Issue 5


The seaweed resources of Portugal

Rui GasparORCID iD: https://orcid.org/0000-0002-7829-1763 / Leonel PereiraORCID iD: https://orcid.org/0000-0002-6819-0619
  • MARE UC – Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
  • Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
  • orcid.org/0000-0002-6819-0619
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Isabel Sousa-PintoORCID iD: https://orcid.org/0000-0002-9231-0553
Published Online: 2019-09-09 | DOI: https://doi.org/10.1515/bot-2019-0012


Continental Portugal and its two archipelagos (Azores Islands and Madeira Islands) present a very interesting and diverse seaweed community. Its great diversity results for example from different environmental conditions such as the latitudinal gradients that affect the continental Portugal coastal shoreline in unique ways. The first Portuguese phycological studies published date from the end of the 18th century and seaweeds have been harvested to be used as fertilizer since at least the 14th century. However, Portuguese seaweeds are still a natural and valuable resource that is relatively under explored or studied, particularly regarding its economic potential. Although Portugal was one of the world’s main agar producers in the past, the sustainability of its seaweed exploitation was overlooked. Contemporary awareness of this valuable resource might bring together role players such as researchers and industries towards innovative and sustainable practices (such as to make use of non-indigenous species that have been registered in the country). Nowadays, almost all Portuguese higher education institutions currently have research groups dedicated to studies related to seaweeds (ranging from ecological and environmental assessment studies to seaweed aquaculture, uses and applications). This work addresses the diversity of Portuguese seaweeds and its main economic aspects.

Keywords: Portugal; seaweed biodiversity; seaweed industry; seaweed landings


  • Abreu, M.H., R. Pereira, C. Yarish, A.H. Buschmann and I. Sousa-Pinto. 2011. IMTA with Gracilaria vermiculophylla: productivity and nutrient removal performance of the seaweed in a land-based pilot scale system. Aquaculture 312: 77–87.CrossrefGoogle Scholar

  • Amaro H.M., A. Rato, D. Matias, S. Joaquim, J. Machado, J.F.M. Gonçalves, P. Vaz-Pires, R.O.A. Ozorio, L.F. Pereira, I.C. Azevedo, I. Sousa-Pinto and A.C. Guedes. 2019. Alga diet formulation – an attempt to reduce oxidative stress during broodstock conditioning of Pacific oysters. Aquaculture 500: 540–549.CrossrefGoogle Scholar

  • Araújo, R., I. Bárbara, M. Tibaldo, E. Berecibar, P.D. Tapia, R. Pereira, R. Santos and I. Sousa-Pinto. 2009. Checklist of benthic marine algae and cyanobacteria of northern Portugal. Bot. Mar. 52: 24–46.Google Scholar

  • Araújo, R.M., J. Assis, R. Aguillar, L. Airoldi, I. Bárbara, I. Bartsch, T. Bekkby, H. Christie, D. Davoult, S. Derrien-Courtel, C. Fernandez, S. Fredriksen, F. Gevaert, H. Gundersen, A. Le Gal, L. Lévêque, N. Mieszkowska, K.M. Norderhaug, P. Oliveira, A. Puente, J.M. Rico, E. Rinde, H. Schubert, E.M. Strain, M. Valero, F. Viard and I. Sousa-Pinto. 2016a. Status, trends and drivers of kelp forests in Europe: an expert assessment. Biodivers. Conserv. 25: 1319–1348.CrossrefGoogle Scholar

  • Araújo, M., P. Rema, I. Sousa-Pinto, L.M. Cunha, M.J. Peixoto, M.A. Pires, F. Seixas, V. Brotas, C. Beltrán and L.M.P. Valente. 2016b. Dietary inclusion of IMTA-cultivated Gracilaria vermiculophylla in rainbow trout (Oncorhynchus mykiss) diets: effects on growth, intestinal morphology, tissue pigmentation, and immunological response. J. App. Phycol. 28: 679–689.CrossrefGoogle Scholar

  • Ardré, F. 1961. Algues du Portugal: liste préliminaire (I). Rév. Gén. Bot. 68: 443–456.Google Scholar

  • Ardré, F. 1970. Contribution a l’étudedes algues marines du Portugal. I. La flore. Port. Acta Biol. Sé r. B, Sist. B 10: 423.Google Scholar

  • Ardré, F. 1971. Contribution a l’étude des algues marines du Portugal II. Ecologie et Chorologie. Bull. Cent. Etud. Rech. Sci., Biarritz 8: 359–574.Google Scholar

  • Ardré, F., C.-F. Boudouresque and J. Cabioch. 1974. Présence remarquable du Symphyocladia marchantioides (Harvey) Falkenberg (Rhodomélacées, Céramiales) aux Açores. Bull. Soc. Phycol. France. 19: 178–182.Google Scholar

  • Assis, J., D. Tavares, J. Tavares, A. Cunha, F. Alberto and E.A. Serrão. 2009. Findkelp, a GIS-based community participation project to assess Portuguese kelp conservation status. J. Coastal Res.56: 1469–1473.Google Scholar

  • Athanasiadis, A. and I. Tittley. 1994. Antithamnioid algae (Rhodophyta, Ceramiaceae) newly recorded from the Azores. Phycologia 33: 77–80.CrossrefGoogle Scholar

  • Azevedo, G., L. Hilliou, G. Bernardo, I. Sousa-Pinto, R.W. Adams, M. Nilsson and R.D. Villanueva. 2013. Tailoring kappa/iota-hybrid carrageenan from Mastocarpus stellatus with desired gel quality through pre-extraction alkali treatment. Food Hydrocoll. 31: 94–102.CrossrefGoogle Scholar

  • Azevedo, G., B. Domingues, H. Abreu, I. Sousa-Pinto, G. Feio and L. Hilliou. 2015. Impact of cultivation of Mastocarpus stellatus in IMTA on the seaweeds chemistry and hybrid carrageenan properties. Carbohydr. Polym. 116: 140–148.CrossrefGoogle Scholar

  • Azevedo, I.C., G.S. Marinho, D.M. Silva and I. Sousa-Pinto. 2016. Pilot scale land-based cultivation of Saccharina latissima Linnaeus at southern European climate conditions: growth and nutrient uptake at high temperatures. Aquaculture 459: 166–172.CrossrefGoogle Scholar

  • Bárbara, I. and J. Cremades. 2004. Grateloupia lanceola versus Grateloupia turuturu (Gigartinales, Rhodophyta) en la Península Ibérica. An. Jard. Bot. Madrid 61: 103–118.Google Scholar

  • Barbosa, M., F. Fernandes, D.M. Pereira, I.C. Azevedo, I. Sousa-Pinto, P.B. Andrade and P. Valentão. 2017. Fatty acid patterns of the kelps Saccharina latissima, Saccorhiza polyschides and Laminariaochroleuca: influence of changing environmental conditions. Arab. J. Chem. doi: http://dx.doi.org/10.1016/j.arabjc.2017.01.015.

  • Berecibar Zugasti, E. 2011. Long-term changes in the phytogeography of the portuguese continental coast. PhD thesis, Universidade do Algarve, Faro, Portugal. pp. 266.Google Scholar

  • Berecibar, E. 2016. Identificação das espécies de macroalgas não indígenas da costa portuguesa. Projeto BioMar PT, Porto, Lisbon, Portugal. pp. 145.Google Scholar

  • Berecibar, E., M.J. Wynne and R. Santos. 2009a. Report of the red alga Gulsonia nodulosa (Ceramiales, Rhodophyta) from ­Portugal, its first recorded occurrence outside the Mediterranean Sea. Nova Hedwigia 88: 23–31.CrossrefGoogle Scholar

  • Berecibar, E., M.J. Wynne and R. Santos. 2009b. First record of Contarinia squamariae (Rhizophyllidaceae, Rhodophyta) from Portugal: description of morphological and reproductive structures. Bot. Mar. 52: 15–23.Google Scholar

  • Berecibar, E., M.J. Wynne and R. Santos. 2009c. Report of the brown alga Zosterocarpus oedogonium (Ectocarpales) from Portugal, its first recorded occurrence outside of the Mediterranean Sea. Nova Hedwigia 89: 237–244.CrossrefGoogle Scholar

  • Bettencourt, A., S.B. Bricker, J.G. Ferreira, A. Franco, J.C. Marques, J.J. Melo, A. Nobre, L. Ramos, C.S. Reis, F. Salas, M.C. Silva, T. Simas and W. Wolff. 2004. Typology and reference conditions for portuguese transitional and coastal waters. In: (INAG, IMAR, eds) Development of Guidelines for the Application of the European Union Water Framework Directive, Lisbon, 99 pp. (available online at: http://www.ecowin.org/ticor/documents/ticor%20book.pdf).

  • Boaventura, D., P. Ré, L.C. da Fonseca and S.J. Hawkins. 2002. Intertidal rocky shore communities of the continental Portuguese coast: analysis of distribution patterns. Mar. Ecol. 23: 69–90.CrossrefGoogle Scholar

  • Cabrita, M.T., A. Silva, P.B. Oliveira, M.M. Angélico and M. Nogueira. 2015. Assessing eutrophication in the Portuguese continental exclusive economic zone within the European marine strategy framework directive. Ecol. Indic. 58: 286–299.CrossrefGoogle Scholar

  • Cabrita, A.R.J., M.R.G. Maia, H.M. Oliveira, I. Sousa-Pinto, A.A. Almeida, E. Pinto and A.J.M. Fonseca. 2016. Tracing seaweeds as mineral sources for farm-animals. J. App. Phycol. 28: 3135–3150.CrossrefGoogle Scholar

  • Cabrita, A.R.J., M.R.G. Maia, I. Sousa-Pinto and A.J.M. Fonseca. 2017. Ensilage of seaweeds from an integrated multi-trophic aquaculture system. Algal Res. 24: 290–298.CrossrefGoogle Scholar

  • Cardigos, F., F. Tempera, S. Ávila, J. Gonçalves, A. Colaço and R.S. Santos. 2006. Nonindigenous marine species of the Azores. Helgol Mar. Res. 60: 160–169.CrossrefGoogle Scholar

  • Casado-Amezúa, P., R. Araújo, I. Bárbara, R. Bermejo, Á. Borja, I. Díez, C. Fernández, J.M. Gorostiaga, X. Guinda, I. Hernández, J.A. Juanes, V. Peña, C. Peteiro, A. Puente, I. Quintana, F. Tuya, R.M. Viejo, M. Altamirano, T. Gallardo and B. Martínez. 2019. Distributional shifts of canopy-forming seaweeds from the Atlantic coast of Southern Europe. Biodivers. Conserv. 28: 1151–1172.CrossrefGoogle Scholar

  • Castro, M.L. and M.C. Viegas. 1987. Estudo dos povoamentos de algas fotófilas da ilha de S. Miguel (Açores). Arquipélago. Life Mar. Sci. 4: 7–30.Google Scholar

  • Chainho, P., A. Fernandes, A. Amorim, S.P. Ávila, J. Canning-Clode, J.J. Castro, A.C. Costa, J.L. Costa, T. Cruz, S. Gollasch, C. Grazziotin-Soares, R. Melo, J. Micael, M.I. Parente, J. Semedo, T. Silva, D. Sobral, M. Sousa, P. Torres, V. Veloso and M.J. Costa. 2015. ­Non-indigenous species in Portuguese coastal areas, coastal lagoons, estuaries and islands. Estuar. Coast. Shelf Sci. 167: 199–211.CrossrefGoogle Scholar

  • Cole, S. 1991. Women of the Praia: Work and lives in a Portuguese coastal community. Princeton Univ. Press, Princeton, New Jersey.Google Scholar

  • Correa da Serra, J. 1796. Sobre a fructificação das Algas submersas. Phlos. Trans.R. Soc. Part II: 494–505.Google Scholar

  • Costa, R.N. 2016. A maresia das algas: do areal para o laboratório. Observador. Available online at: https://observador.pt/2016/03/06/maresia-das-algas-do-areal-laboratorio/ (accessed on 22 January 2019).

  • DomingosVandelli, D. 1788. Florae lusitaniae et Brasiliensis specimen, Algae. Conimbricae 68.Google Scholar

  • Domingues, B., H. Abreu and I. Sousa Pinto. 2015. Bioremediation efficiency of Mastocarpus stellatus (Stackhouse) Guiry, in an Integrated Multi-Trophic Aquaculture System. J. Appl. Phycol. 27: 1289–1295.CrossrefGoogle Scholar

  • Fernandes, F., M. Barbosa, D.M. Pereira, I. Sousa-Pinto, P. Valentão, I.C. Azevedo and P.B. Andrade. 2018. Chemical profiling of edible seaweed (Ochrophyta) extracts and assessment of their in vitro effects on cell-free enzyme systems and on the viability of glutamate-injured SH-SY5Y cells. Food Chem. Toxicol. 116: 196–206.CrossrefGoogle Scholar

  • Ferreira, S., M. Kaufmann, A.I. Neto, J.P. Izaguirre, P. Wirtz and O. de Clerck. 2012. New records of macroalgae from Madeira Archipelago. In: International Symposium Flora Mac 2012, 5–8 de September, Madeira, Portugal.Google Scholar

  • Fischer-Piette, E. and M. Prenant. 1957. Quelques données écologiques sur les cirripèdes intercotidaux du Portugal, de l’Espagne du sud et du nord du Maroc. Bull. Cent. Etud. Rech. Sci. Biarritz 1: 361−368.Google Scholar

  • Fralick, R.A. and F. Andrade. 1981. The growth, reproduction, harvesting and management of Pterocladia pinnata (Rhodophyceae) in the Azores, Portugal. In: (T. Levring, ed) Proceedings Xth International Seaweed Symposium, Göteborg, Sweden. Walter de Gruyter, Berlin. pp. 289–296.Google Scholar

  • Franco, J. 2017. Kelps across Iberia: from patterns of abundance and distribution to top-down and bottom-up regulatory processes. Ph.D Thesis. University of Porto, Portugal.Google Scholar

  • Franco, J., F. Tuya, I. Bertocci, L. Rodriguez-Garcia, B. Martinez, I. Sousa Pinto and F. Arenas. 2017. The ‘golden kelp’ Laminaria ochroleuca under climate change: integrating eco-physiological responses to temperature and nutrients with species distribution models. J. Ecol. 106: 47–58.Google Scholar

  • Fredericq, S., E. Serrão and J.N. Norris. 1992. New records of red algae from the Azores. Arquipelago 10: 1–4.Google Scholar

  • Gain, L. 1914. Algues provenant des campagnes de “1’Hirondelle” 11” (1911–1912). Bull. l’lnstitute Ocianograjique 279: 1–23.Google Scholar

  • Gaspar, R., L. Pereira and J.M. Neto. 2017. Intertidal zonation and latitudinal gradients on macroalgal assemblages: Species, functional groups and thallus morphology approaches. Ecol. Indic. 81: 90–103.CrossrefGoogle Scholar

  • Ginsburg-Ardré, F. 1966. Algues du Portugal: liste préliminaire, III. Rev. Gén. Bot. 73: 353–359.Google Scholar

  • Haroun, R.J., A. Cruz-Reyes, G. Herrera-López, M.I. Parente and M.C. Gil-Rodríguez. 2002. Flora marina de la isla de Madeira Islands: resultados de la expedición “Macaronesia 2000”. Rev. la Acad. Canar. Ciencias 14: 37–52.Google Scholar

  • Hauck, F. 1889. Algas de Norte de Portugal. In: I. Newton. Bol. Soc. Broter. 7: 136–158.Google Scholar

  • Izquierdo, J.L., M.J. Navarro and T. Gallardo. 1993. Mapas de distribuciónde algas marinas de la Península Ibérica. IV. Laminaria ochoeroleuca (Pylaie), L. hyperborea (Gunner.) Foslie y L. saccharina (L.) Lamour. (Laminariales, Fucophyceae). Bot. Complut. 18: 291−304.Google Scholar

  • Jesus, D. 2002. A Apanha de Algas no Sudoeste Alentejano. Naturlink. Available online at: http://naturlink.pt/article.aspx?menuid=4&cid=83600&bl=1&viewall=true (accessed on 22 January 2019).

  • Krumhansl K.A., D.K., Okamoto, A. Rassweiler, M. Novak, J.J. Bolton, K.C. Cavanaugh, S.D. Connell, C.R. Johnson, B. Konar, S.D. Ling, F. Micheli, K.M. Norderhaug, A. Pérez-Matus, I. Sousa-Pinto, D.C. Reed, A.K. Salomon, N.T. Shears, T. Wernberg, R.J. Anderson, N.S. Barrett, A.H. Buschmann, M.H. Carr, J.E. Caselle, S. Derrien-Courtel, G.J. Edgar, M. Edwards, J.A. Estes, C. Goodwin, M.C. Kenner, D.J. Kushner, F.E. Moy, J. Nunn, R.S. Steneck, J. Vásquez, J. Watson, J.D. Witman and J.E.K. Byrnes. 2016. Global patterns of kelp forest change over the past half-century. Proc. Natl. Acad. Sci. USA 48: 13785–13790.Google Scholar

  • Lemos, R.T. and H.E. Pires. 2004. The upwelling regime off the west Portuguese coast, 1941–2000. Int. J. Climatol. 24: 511–524.CrossrefGoogle Scholar

  • Levring, T. 1974. The marine algae of the Archipelago of Madeira. Bol. Mus. Mun. Funchal 28: 52111.Google Scholar

  • Lima, F.P., P.A. Ribeiro, N. Queiroz, S.J. Hawkins and A.M. Santos. 2007. Do distributional shifts of northern and southern species of algae match the warming pattern? Glob. Change Biol. 13: 2592–2604.CrossrefGoogle Scholar

  • Lopes, J.C. 1990. Decréscimo dos recursos algológicos explorados numa região litoral do Norte. LNETI, Lisboa.Google Scholar

  • Marinho, G., C. Nunes, I. Sousa Pinto, R. Pereira, P. Rema and L. Valente. 2013. IMTA cultivated Chlorophyta Ulva spp. as a sustainable fish feed ingredient for Nile tilapia (Oreochromis niloticus). J. Appl. Phycol. 25: 1359–1367.CrossrefGoogle Scholar

  • Marques, A., S. Imaginário, H. Rodrigues and R. Santos. 2012. Portuguese macroalgae industry. Available online at http://www.netalgae.eu/uploadedfiles/Portugal.pdf.

  • Martins, C.G. 1993. OCEANUS 2.0. Departamento de Programação e Gestão Financeira do Ministério da Educação, Lisboa. pp. 41 + 2 Disks.Google Scholar

  • Mata, L., J. Silva, A. Schuenhoff and R. Santos. 2006. The effects of light and temperature on the photosynthesis of the ­Asparagopsis armata tetrasporophyte (Falkenbergia rufolanosa), cultivated in tanks. Aquaculture 252: 12–19.CrossrefGoogle Scholar

  • Matos, J., S. Costa, A. Rodrigues, R. Pereira and I. Sousa-Pinto. 2006. Experimental integrated aquaculture of fish and red seaweeds in Northern Portugal. Aquaculture 252: 31–42.CrossrefGoogle Scholar

  • Melo, R.A. 2002. Exploração dos recursos algológicos em ­Portugal. In: (M.A. Martins-Loução, coord.), Fragmentos em Ecologia, FCUL-Livraria Escolar Editora. pp. 45–65 (ISBN 972-592-150-X).Google Scholar

  • Mendes, M., R. Pereira, I. Sousa Pinto, A.P. Carvalho and A.M. Gomes. 2013. Antimicrobial activity and lipid profile of seaweed extracts from the North Portuguese Coast. Int. Food Res. J. 20: 3337–3345.Google Scholar

  • Mesquita Rodrigues, J.E. 1958. A new variety of Gigartina teedii (Roth) Lamour. Bol. Soc. Brot. 32: 91–94.Google Scholar

  • Mesquita Rodrigues, J.E. 1963. Contribuição para o conhecimento das Phaeophyceae da costa portuguesa. Composiçãoe Impressão das Oficinas de Tip Alcobacense, Alcobaça. pp. 163.Google Scholar

  • Miguel, M.I.G. 2017. Mapeamento participativo de serviços dos ecossistemas marinhos no Parque Natural do Sudoeste Alentejano e Costa Vicentina (MScThesis), Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa. pp. 129.Google Scholar

  • Morton B., J.C. Britton and A.M.F. Martins. 1998. Costal ecology of the Açores. Sociedade Afonso Chaves, Ponta Delgada. pp. 249.Google Scholar

  • Mulas, M. and I. Bertocci. 2016. Devil’s tongue weed (Grateloupia turuturu Yamada) in northern Portugal: passenger or driver of change in native biodiversity? Mar. Environ. Res. 118: 1–9.CrossrefGoogle Scholar

  • Neto, A.I. 1989. Algas marinhas do litoral da ilha Graciosa. Graciosa/88. Preliminary report. Reports and Communications of Biology Department, University of Azores, 17. pp. 61–65.Google Scholar

  • Neto, A.I. 1992. Contribution to the taxonomy and ecology of the Azorean benthic marine algae. Biol. J. Linn. Soc. 46: 163–176.CrossrefGoogle Scholar

  • Neto, A.I. 1994. Checklist of the benthic marine macroalgae of the Azores. Arquipélago 12A: 15–34.Google Scholar

  • Neto, A.I., D.C. Cravo and R.T. Haroun. 2001. Checklist of the benthic marine plants of the Madeira Archipelago. Bot. Mar. 44: 391–414.Google Scholar

  • Neto, A.I., I. Tittley and P.M. Raposeiro. 2006. Flora marinha do litoral dos açores. Rockyshore marine flora of the azores. Horta: Secretaria Regional do Ambiente e do Mar.Google Scholar

  • Oliveira, J.C. 1992. Edible algae from Portugal. Proc. 3rd Workshop COST 48 Subgroup3 St Malo 1991.Google Scholar

  • Palminha, F.P. 1951. Contribuições para o estudo das algas marinhas portuguesas, I. Bol. Soc. Port. Cienc. Nat. 2: 226–250.Google Scholar

  • Palminha, F.P. 1953. A bodelha no litoral português. Naturália 4: 1–9.Google Scholar

  • Palminha, F.P. 1954. Espécies novas para a flora algológica portuguesa (litoral algarvio). Port. ActaBiol. 4: 318–323.Google Scholar

  • Palminha. F.P. 1957. Sobre a existência de Lithophyllum tortuosum (Esper.) Foslie (=Tenarea tortuosa (Esper.) Lem.) nos Açores. Bol. Soc. Port. Ci. Nat. 2ª série. 22: 61–67.Google Scholar

  • Palminha, F.P. 1958. As algas marinhas da zona costeira da Arrábida e a sua protecção (contribuição para um estudo algológico). Publicação Liga Protecção Nat. 16: 5–24.Google Scholar

  • Palminha, F.P. 1961. Sur la distribution de deux Phéophicées au Portugal. Rev. Algol. 5: 236–239.Google Scholar

  • Palminha, F. 1971. Exploração e utilização de algas marinhas na plataforma portuguesa e nas ilhas do Arquipélago dos Açores. Junta Nacional do Fomento das Pescas 7: 25–36.Google Scholar

  • Palminha, F., R.A. Melo and R. Santos. 1982. A existência de Gelidium sesquipedale (Clem.) Bornet Thur. na costa sul do Algarve. I. Distribuição local. Boletim do INIP 8: 93–105.Google Scholar

  • Palminha, F., R. Santos and R.A. Melo. 1985. A existência de Gelidium sesquipedale (Clem.) Bornet Thur. na costa sul do Algarve. II. Biomassa total. Boletim do INIP 13: 77–91.Google Scholar

  • Patarra, R.F. 2017. Culture studies of economically important seaweeds. Doctoral thesis in Biology. Faculdade de Ciências e Tecnologia, Departamento de Biologia, Universidade dos Açores. pp. viii+157 +Appendix.Google Scholar

  • Pereira, L. 2004. Estudos em macroalgas carragenófitas (Gigartinales, Rhodophyceae) da costa portuguesa – aspectos ecológicos, bioquímicos e citológicos. Coimbra. PhD Thesis, Dep. Botânica, FCTUC, Universidade de Coimbra, pp. 293.Google Scholar

  • Pereira, L. 2016. Edible Seaweeds of the World. 1ª edition. CRC Press (Taylor and Francis Group), Boca Raton, FL, EUA. doi: 10.1201/b19970.Google Scholar

  • Pereira, L. 2018. Seaweeds as source of bioactive substances and skin care therapy –cosmeceuticals, algotherapy and thalassotherapy. Cosmetics 5: 1–41.Google Scholar

  • Pereira, L. and F. Correia. 2015. Algas marinhas da costa portuguesa – ecologia, biodiversidade e utilizações. Prémio do Mar Rei D. Calos. 18ª Edição. Nota de Rodapé Edições. Paris. pp. 340.Google Scholar

  • Pereira, R., I. Sousa-Pinto and C. Yarish. 2004. Field and culture studies of the life history of Porphyra dioica (Bangiales, Rhodophyta) from Portugal. Phycologia 43: 756–767.CrossrefGoogle Scholar

  • Pereira, S.G., F.P. Lima, N.C. Queiroz, P.A. Ribeiro and A.M. Santos. 2006a. Biogeographic patterns of intertidal macroinvertebrates and their association with macroalgae distribution along the Portuguese rocky coast. Hydrobiologia 555: 185−192.CrossrefGoogle Scholar

  • Pereira, R., C. Yarish and I. Sousa-Pinto. 2006b. The influence of stocking density, light and temperature on the growth, production and nutrient removal capacity of Porphyra dioica (Bangiales, Rhodophyta) from Portugal. Aquaculture 252: 66–78.CrossrefGoogle Scholar

  • Pereira, L., F. Meireles and R. Gaspar. 2014. Population studies and carrageenan properties in eight Gigartinales (Rhodophyta) from Iberian Peninsula. In: (V.H. Pomin, ed) Seaweeds: Agricultural Uses, Biological and Antioxidant Agents, Chap 6. Nova Science Publishers, New York, pp. 115.Google Scholar

  • Pereira, T., I. Azevedo, P. Oliveira, D. Silva and I. Sousa-Pinto. 2019a. Life history traits of Laminaria ochroleuca in Portugal: the range-center of its geographical distribution. Aquat. Bot. 152: 1–9.CrossrefGoogle Scholar

  • Pereira, L. et al. 2019b. MACOI, Portuguese seaweeds website. World-wide electronic publication. IMAR, Department of life Sciences, University of Coimbra. Available online at http://macoi.ci.uc.pt (accessed on January 22, 2019).

  • Pinho, D., I. Bertocci, F. Arenas, J.N. Franco, D. Jacinto, J.J. Castro, R. Vieira, I. Sousa-Pinto, T. Wernberg and F. Tuya. 2016. Spatial and temporal variation of kelp forests and associated macroalgal assemblages along the Portuguese coast. Mar. Freshwater Res. 67: 113–122.CrossrefGoogle Scholar

  • Ramos, E., J.A. Juanes, C. Galván, J.M. Neto, R. Melo, A. Pedersen, C. Scanlan, R. Wilkes, E. van den Bergh, M. Blomqvist, H.P. Karup, W. Heiber, J.M. Reitsma, M.C. Ximenes, A.Silió, F. Méndez and B. González. 2012. Coastal waters classification based on physical attributes along the NE Atlantic region. An approach for rocky macroalgae potential distribution. Est. Coast. Shelf Sci. 112: 105–114.CrossrefGoogle Scholar

  • Rull Lluch, J., A. Gómez Garreta, M.C. Barceló and M.A. Ribera. 1994. Mapas de distribución de algas marinas de la Península Ibérica e Islas Baleares. VII. Cystoseira C. Agardh (Grupo C. baccata) y Sargassum C. Agardh (S. muticum y S. vulgare). Bot. Complut. 19: 131–138.Google Scholar

  • Sangil, C., G.M. Martins, J.C. Hernández, F. Alves, A.I. Neto, C. Ribeiro, K. León-Cisneros, J. Canning-Clode, E. Rosas-Alquicira, J.C. Mendoza, I. Titley, F. Wallenstein, R.P. Couto and M. ­Kaufmann. 2018. Shallow subtidal macroalgae in the North-eastern Atlantic archipelagos (Macaronesian region): a spatial approach to community structure. Eur. J. Phycol. 53: 83–98.CrossrefGoogle Scholar

  • Santelices, B. 1988. Synopsis of biological data on the seaweed genera Gelidium and Pterocladia (Rhodophyta). FAO Fish. Synop. 145. pp. 55.Google Scholar

  • Santos, R. 1993. Plucking or cutting Gelidium sesquipedale? A demographic simulation ofharvest impact using a population projection matrix model. Hydrobiologia 260/261: 269–276.CrossrefGoogle Scholar

  • Santos, R. 1994. Frond dynamics of the commercial seaweed Gelidium sesquipedale: effects of size and of frond history. Mar. Ecol. Prog. Ser. 107: 295–305.CrossrefGoogle Scholar

  • Santos, R. 1995. Size structure and inequality in a commercial stand of the seaweed Gelidium sesquipedale. Mar. Ecol. Prog. Ser. 119: 253–263.CrossrefGoogle Scholar

  • Santos, A.M. 2000. Intertidal ecology of northern Portugueserocky shores. PhD thesis, University of Southampton.Google Scholar

  • Santos, R. and P. Duarte. 1991. Marine plant harvest in Portugal. J. Appl. Phycol. 3: 11–18.CrossrefGoogle Scholar

  • Santos, R. and P. Duarte. 1996. Fecundity, spore recruitment and size in Gelidium sesquipedale (Gelidiales, Rhodophyta). Hydrobiologia 326/327: 223–228.CrossrefGoogle Scholar

  • Santos, F., M. Gómez-Gesteira and I. Álvarez. 2012. Variability of coastal and ocean water temperature in the upper 700 m along the western Iberian Peninsula from 1975 to 2006. PLoS One 7: e50666.CrossrefGoogle Scholar

  • Schmidt, O.C. 1929. Beitrage zur Kenntnis der Meeresalgen der Azoren II. Hedwigia 69: 165–172.Google Scholar

  • Secilla, A., A. Santolaria, I. Diez, E. Berecibar, P. Diaz, I. Barbara and J.M. Gorostiaga. 2008. Scageliopsis patens (Ceramiales, Rhodophyta), a new introduced species along the European coast. Cryptogamie Algol. 29: 191–199.Google Scholar

  • Silva, D., L. Valente, I. Sousa-Pinto, R. Pereira, M. Pires, F. Seixas and P. Rema. 2015. Evaluation of IMTA-produced seaweeds (Gracilaria, Porphyra and Ulva) as dietary ingredients in Nile tilapia, Oreochromis niloticus L., juveniles. Effects on growth performance and gut histology. J. App. Phycol. 27: 1671–1680.CrossrefGoogle Scholar

  • Sousa-Pinto, I., R. Lewis and M. Polne-Füller. 1996. The effect of phosphate concentration on growth and agar content of Gelidium robustum in culture. Hidrobiologia 326/327: 437–443.CrossrefGoogle Scholar

  • Sousa-Pinto, I., S. Coelho, A. Felga, R. Pereira and E. Murano. 1999. The effects of light, on growth and agar content of Gelidium pulchellum (Gelidiaceae, Rhodophyta) in culture. Hydrobiologia 398/399: 329–338.CrossrefGoogle Scholar

  • Southward, A.J., S.J. Hawkins and M.T. Burrows. 1995. Seventy years’ observations of changes in distribution and abundance of zooplankton and intertidal organisms in the western English Channel in relation to rising sea temperature. J. Therm. Biol. 20: 127−155.CrossrefGoogle Scholar

  • Spalding, M.D., H.E. Fox, G.R. Allen, N. Davidson, Z.A. Ferdaña, M. Finlayson, B.S. Halpern, M.A. Jorge, A. Lombana, S.A. Lourie, K.D. Martin, E. McManus, J. Molnar, C.A. Recchia and J. Robertson. 2007. Marine ecoregions of the world: a bio-regionalization of coastal and shelf areas. Bioscience 57: 573−583.CrossrefGoogle Scholar

  • Tittley, I. and A.I. Neto. 1994. The marine algal flora of the Azores and its biogeographical affinities. Bol. Mus. Mun. Funchal (Suppl. 4): 747–766.Google Scholar

  • Tittley, I. and A.I. Neto. 2005. The marine algal (seaweed) flora of the Azores: additions and amendments. Bot. Mar. 48: 248–255.Google Scholar

  • Tittley, I., A.I. Neto and M.I. Parente. 2009. The marine algal (seaweed) flora of the Azores: additions and amendments 3. Bot. Mar. 52: 7–14.Google Scholar

  • Tuya, F., E. Cacabelos, P. Duarte, D. Jacinto, J.J. Castro, T. Silva, I. Bertocci, J.N. Franco, F. Arenas, J. Coca and T. Wernberg. 2012. Patterns of landscape and assemblage structure along a latitudinal gradient in ocean climate. Mar. Ecol. Prog. Ser. 466: 9–19.CrossrefGoogle Scholar

  • TVI24. 2014. Em busca das algas marinhas. Available online at: https://tvi24.iol.pt/videos/informacao/em-busca-das-algas-marinhas/541ebf150cf2c37124ce3457 (accessed on January 22, 2019).

  • Vaz-Pinto, F., C. Olabarria and F. Arenas. 2014. Ecosystem functioning impacts of the invasive seaweed Sargassum muticum (Fucales, Phaeophyceae). J. Phycol. 50: 108–116.CrossrefGoogle Scholar

  • Veiga de Oliveira, E., F. Galhano and B. Pereira. 1975. ActividadesAgro-Maritimas em Portugal. Instituto de Alta Cultura, Lisboa. pp. 236.Google Scholar

  • Verbruggen, H., F. Leliaert, C.A. Maggs, S. Shimada, T. Schils, J. Provan, D. Booth, S. Murphy, O. De Clerck, D.S. Littler, M.M. Littler and E. Coppejans. 2007. Species boundaries and phylogenetic relationships within the green algal genus Codium (Bryopsidales) based on plastid DNA sequences. Mol. Phylogenet. Evol. 44: 240–254.CrossrefGoogle Scholar

  • Vergés, A., N. Sánchez, C. Peteiro, L. Polo and J. Brodie. 2013. Pyropia suborbiculata (Bangiales, Rhodophyta): first records from the northeastern Atlantic and Mediterranean of this North Pacific species. Phycologia 52: 121–129.CrossrefGoogle Scholar

  • Vicêncio, S.C. 2009. Distribuição de macroalgas nativas e exóticas no substrato duro subtidal do Porto de Sines. Master thesis in Ecology, Management and Modelling of Marine Resources. New University of Lisbon.Google Scholar

  • Vieira, R., I. Sousa-Pinto and F. Arenas. 2017. The role of nutrient enrichment in the invasion process at intertidal rock pools. Hydrobiologia 133: 1–16.Google Scholar

  • Wallenstein, F.M. 2011. Rocky Shore Macroalgae Communities of the Azores (Portugal) and the British Isles: a Comparison for the Development of Ecological Quality Assessment Tools. PhD thesis. Heriot Watt University.Google Scholar

  • Wallenstein, F.M., M.R. Terra, J. Pombo and A.I. Neto. 2009. Macroalgal turfs in the Azores. Mar. Ecol. 30: 113–117.CrossrefGoogle Scholar

  • Wallenstein, F.F.M.M. and A.I. Neto. 2006. Intertidal rocky shore biotopes of the Azores: a quantitative approach. Helgol. Mar. Res. 60: 196–206.CrossrefGoogle Scholar

  • Welwitsch, F. 1850. Genera phycearum lusitaniae. Act. Sessoes Acad. Real. Sc. Lisboa 2: 106–116.Google Scholar

  • Yoneshigue, Y. 1985. Taxonomie et ecologie des algues marines dans la région de Cabo Frio (Rio de Janiero, Bresil). PhD thesis. University D’Aix-Marseille II, Marseille, France.Google Scholar

About the article

Rui Gaspar

Rui Gaspar studied and works at the University of Coimbra, from where he obtained a Biology degree, a Master’s degree in Ecology and a PhD degree in Biosciences (specialization in Marine Ecology). His areas of scientific activity and expertise have been focusing on coastal and estuarine environments, namely on the ecology, biodiversity and taxonomy of macroalgae, including environmental quality assessment and invasive species.

Leonel Pereira

Leonel Pereira has a degree in Biology (scientific branch) and a PhD in Biology (Cell Biology specialty) from the Faculty of Science and Technology of the University of Coimbra (Portugal), where he is currently Professor. He is an investigator integrated in MARE (Marine and Environmental Sciences Centre). His interests are focused on marine biodiversity (algae), marine biotechnology (bioactive compounds of macroalgae) and marine ecology (environmental assessment). Since 2008 he is the author and editor of the electronic publication MACOI – Portuguese Seaweeds Website (www.uc.pt/seaweeds). He recently received the King D. Carlos Award (18th edition) and the CHOICE Award Winner 2016. Outstanding academic title: Edible seaweeds of the world.

Isabel Sousa-Pinto

Isabel Sousa-Pinto has a Licenciatura in Biology from the University of Porto and a PhD in Marine Biology (Phycology) from the University of California, Santa Bárbara USA (1994). She is a Professor at University of Porto and head of the Laboratory of Coastal Biodiversity from CIIMAR. Her research interests include the ecology of benthic communities and phycology: biology, ecophysiology, and cultivation, including the systems of Integrated Multitrophic Aquaculture (IMTA). She was a founding member of the Portuguese Association of Applied Phycology.

Received: 2019-02-06

Accepted: 2019-08-14

Published Online: 2019-09-09

Published in Print: 2019-09-25

Citation Information: Botanica Marina, Volume 62, Issue 5, Pages 499–525, ISSN (Online) 1437-4323, ISSN (Print) 0006-8055, DOI: https://doi.org/10.1515/bot-2019-0012.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in