Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Botanica Marina

Editor-in-Chief: Dring, Matthew J.


IMPACT FACTOR 2018: 0.919
5-year IMPACT FACTOR: 1.336

CiteScore 2018: 1.22

SCImago Journal Rank (SJR) 2018: 0.399
Source Normalized Impact per Paper (SNIP) 2018: 0.672

Online
ISSN
1437-4323
See all formats and pricing
More options …
Volume 62, Issue 5

Issues

Ecosystem-based management of seaweed harvesting

Heike K. LotzeORCID iD: https://orcid.org/0000-0001-6258-1304 / Inka Milewski
  • Department of Biology, Dalhousie University, 1355 Oxford Street, PO BOX 15000, Halifax, NS, B3H 4R2, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Julia Fast
  • Department of Biology, Dalhousie University, 1355 Oxford Street, PO BOX 15000, Halifax, NS, B3H 4R2, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lauren Kay
  • Department of Biology, Dalhousie University, 1355 Oxford Street, PO BOX 15000, Halifax, NS, B3H 4R2, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Boris Worm
  • Department of Biology, Dalhousie University, 1355 Oxford Street, PO BOX 15000, Halifax, NS, B3H 4R2, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-08-23 | DOI: https://doi.org/10.1515/bot-2019-0027

Abstract

Harvesting wild seaweeds has a long history and is still relevant today, even though aquaculture now supplies >96% of global seaweed production. Current wild harvests mostly target canopy-forming kelp, rockweed and red macroalgae that provide important ecosystem roles, including primary production, carbon storage, nutrient cycling, habitat provision, biodiversity and fisheries support. Harvest methods range from selective hand-cutting to bottom trawling. Resulting ecosystem impacts depend on extraction method and scale, ranging from changes in primary production to habitat disruption, fragmentation, food-web alterations and bycatch of non-target species. Current management often aims for sustainable harvesting in a single-species context, although some agencies acknowledge the wider ecosystem structure, functions and services seaweeds provide. We outline potential ecosystem-based management approaches that would help sustain productive and diverse seaweed-based ecosystems. These include maintaining high canopy biomass, recovery potential, habitat structure and connectivity, limiting bycatch and discards, while incorporating seasonal closures and harvest-exclusion zones into spatial management plans. Other sustainability considerations concern monitoring, enforcement and certification standards, a shift to aquaculture, and addressing cumulative human impacts, invasive species and climate change. Our review provides a concise overview on how to define and operationalize ecosystem-based management of seaweed harvesting that can inform ongoing management and conservation efforts.

This article offers supplementary material which is provided at the end of the article.

Keywords: canopy structure; community composition; ecosystem effects; functions and services; habitat impacts

References

  • Anderson, R.J., M.D. Rothman, A. Share and H. Drummond. 2006. Harvesting of the kelp Ecklonia maxima in South Africa affects its three obligate, red algal epiphytes. J. Appl. Phycol. 18: 343–349.CrossrefGoogle Scholar

  • Anderson, R.J., A. Rand, M.D. Rothman and J.J. Bolton. 2007. Mapping and quantifying the South African kelp resource. Afr. J. Mar. Sci. 29: 369–378.CrossrefGoogle Scholar

  • Anderson, S.C., J. Mills-Flemming, R. Watson and H.K. Lotze. 2011. Rapid global expansion of invertebrate fisheries: trends, drivers and ecosystem effects. PLoS One 6: e14735.CrossrefGoogle Scholar

  • Angus, S. 2017. Modern seaweed harvesting in Scotland: the legal and ecological context. Scot. Geogr. J. 133: 101–114.CrossrefGoogle Scholar

  • Anis, M., S. Ahmed and M. Hasan. 2017. Algae as nutrition, medicine and cosmetic: the forgotten history, present status and future trend. World J. Pharm. Sci. 6: 1934–1959.Google Scholar

  • Araújo, R.M., J. Assis, R. Aguillar, L. Airoldi, I. Barbara, I. Bartsch, T. Bekkby, H. Christie, D. Davoult, S. Derrien-Courtel, C. Fernandez, S. Fredriksen, F. Gevaert, H. Gundersen, A. Le Gal, L. Leveque, N. Mieszkowska, K.M. Norderhaug, P. Oliveira, A. Puente, J.M. Rico, E. Rinde, H. Schubert, E.M. Strain, M. Valero, F. Viard and I. Sousa-Pinto. 2016. Status, trends and drivers of kelp forests in Europe: an expert assessment. Biodiv. Cons. 25: 1319–1348.CrossrefGoogle Scholar

  • Arkema, K.K., S.C. Abramson and B.M. Dewsbury. 2006. Marine ecosystem-based management: from characterization to implementation. Front. Ecol. Environ. 4: 525–532.CrossrefGoogle Scholar

  • Arkema, K.K., G. Guannel, G. Verutes, S.A. Wood, A. Guerry, M. Ruckelshaus, P. Kareiva, M. Lacayo and J.M. Silver. 2013. Coastal habitats shield people and property from sea-level rise and storms. Nat. Clim. Change 3: 913–918.CrossrefGoogle Scholar

  • Armitage, D.R., R. Plummer, F. Berkes, R.I. Arthur, A.T. Charles, I.J. Davidson-Hunt, A.P. Diduck, N.C. Doubleday, D.S. Johnson, M. Marschke, P. McConney, E.W. Pinkerton and E.K. Wollenberg. 2009. Adaptive co-management for social–ecological complexity. Front. Ecol. Environ. 7: 95–102.CrossrefGoogle Scholar

  • ASC-MSC. 2018. Seaweed (Algae) Standard Version 1.01. Aquaculture Stewardship Council (ASC) and Marine Stewardship Council (MSC). Available online at https://www.asc-aqua.org/wp-content/uploads/2017/11/ASC-MSC-Seaweed-Algae-Standard-v1.01.pdf.

  • Benedetti-Cecchi, L., L. Tamburello, E. Maggi and F. Bulleri. 2015. Experimental perturbations modify the performance of early warming indicators of regime shift. Curr. Biol. 25: 1867–1872.CrossrefGoogle Scholar

  • Bertocci, I., R. Araújo, P. Oliveira and I. Sousa-Pinto. 2015. Potential effects of kelp species on local fisheries. J. Appl. Ecol. 52: 1216–1226.CrossrefGoogle Scholar

  • Blamey, L. and J.J. Bolton. 2018. The economic value of South African kelp forests and temperate reefs: past, present and future. J. Mar. Syst. 188: 172–181.CrossrefGoogle Scholar

  • Borras-Chavez, R., M. Edwards and J.A. Vásquez. 2012. Testing sustainable management in Northern Chile: harvesting Macrocystis pyrifera (Phaeophyceae, Laminariales). A case study. J. Appl. Phycol. 24: 1655–1665.CrossrefGoogle Scholar

  • Bulleri, F., L. Benedetti-Cecchi, G. Ceccherelli and L. Tamburello. 2017. A few is enough: a low cover of a non-native seaweed reduces the resilience of Mediterranean macroalgal stands to disturbances of varying extent. Biol. Inv. 19: 2291–2305.CrossrefGoogle Scholar

  • Buschmann, A.H., M.C. Hernández-González and D. Varela. 2008. Seaweed future cultivation in Chile: perspectives and challenges. Int. J. Environ. Pollut. 33: 432–456.CrossrefGoogle Scholar

  • Buschmann, A.H., C. Camus, J. Infante, A. Neori, Á. Israel, M.C. Hernández-González, S.V. Pereda, J.L. Gomez-Pinchetti, A. Goldberg, N. Tadmor-Shalev and A.T. Critchley. 2017. Seaweed production: overview of the global state of exploitation, farming and emerging research activity. Eur. J. Phycol. 52: 391–406.CrossrefGoogle Scholar

  • Bustamante, M., J. Tajadura, I. Díez and J.I. Saiz-Salinas. 2017. The potential role of habitat-forming seaweeds in modeling benthic ecosystem properties. J. Sea Res. 130: 123–133.CrossrefGoogle Scholar

  • Campbell, I., A. McLeod, C. Sahlmann, L. Neves, J. Funderud, M. Øverland, A.D. Hughes and M. Stanley. 2019. The environmental risks associated with the development of seaweed farming in Europe – prioritizing key knowledge gaps. Front. Mar. Sci. 6: 107.CrossrefGoogle Scholar

  • Chen, Q., X.-D. Pan, B.-F. Huang and J.-L. Han. 2018. Distribution of metals and metalloids in dried seaweeds and health risk to population in southeastern China. Sci. Rep. 8: 3578.CrossrefGoogle Scholar

  • Chennubhotla, V.S., M.U. Rao and K.S. Rao. 2013. Exploitation of marine algae in Indo-Pacific region. Seaweed Res. Util. 35: 1–77.Google Scholar

  • Chennubhotla, V.S.K., K.S. Rao and N. Kaliaperumal. 2015. Effect of some adverse factors on the diversity and distribution of marine macro algae along the Indian Coasts. Seaweed Res. Util. 36: 5–11.Google Scholar

  • Christie, H., S. Fredriksen and E. Rinde. 1998. Regrowth of kelp and colonization of epiphyte and fauna community after kelp trawling at the coast of Norway. Hydrobiologia 375: 49–58.Google Scholar

  • Christie, H., K.M. Norderhaug and S. Fredriksen. 2009. Macrophytes as habitat for fauna. Mar. Ecol. Prog. Ser. 396: 221–233.CrossrefGoogle Scholar

  • Cullen-Unsworth, L.C. and R.K.F. Unsworth. 2016. Strategies to enhance the resilience of the world’s seagrass meadows. J. Appl. Ecol. 53: 967–972.CrossrefGoogle Scholar

  • Dayton, P.K., S.F. Thrush and F.C. Coleman. 2002. Ecological effects of fishing in marine ecosystems of the United States. Pew Ocean Commission, Arlington. pp. 45.Google Scholar

  • Delaney, A., K. Frangoudes and S.-A. Li. 2016. Society and seaweed: understanding the past and present. In: (Fleurence, J. and I. Levine, eds) Seaweed in. Elsevier Academic Press, London. pp. 7–40.Google Scholar

  • DFO. 2009. Does eelgrass (Zostera marina) meet the criteria as an ecologically significant species? Department of Fisheries and Oceans, CSAS Sci. Advis. Rep. 2009/018.Google Scholar

  • DFO. 2013. Assessment of information on Irish moss, rockweed, and kelp harvests in Nova Scotia. Department of Fisheries and Oceans, CSAS Sci. Advis. Rep. 2013/004.Google Scholar

  • Durrant, H.M.S., N.S. Barrett, G.J. Edgar, M.A. Coleman and C.P. Burridge. 2018. Seascape habitat patchiness and hydrodynamics explain genetic structuring of kelp populations. Mar. Ecol. Prog. Ser. 587: 81–92.CrossrefGoogle Scholar

  • Eddy, T.D., H.K. Lotze, E.A. Fulton, M. Coll, C.H. Ainsworth, J.N. Araújo, C. Bulman, A. Bundy, V. Christensen, J.C. Field, N. Gribble, M. Hasan, S. Mackinson and H. Townsend. 2017. Ecosystem effects of invertebrate fisheries. Fish Fish. 18: 40–53.CrossrefGoogle Scholar

  • Epstein, G. and D.A. Smale. 2017. Undaria pinnatifida: a case study to highlight challenges in marine invasion ecology and management. Ecol. Evol. 7: 8624–8642.CrossrefGoogle Scholar

  • European Commission. 2008. Natura 2000: Protecting Europe’s biodiversity. European Commission, Directorate General for the Environment, Brussels, Belgium. pp. 292.Google Scholar

  • Falace, A., L. Tamburello, G. Guarnieri, S. Kalbe, L. Papa and S. Fraschetti. 2018. Effects of a glyphosate-based herbicide on Fucus virsoides (Fucales, Ochrophyta) photosynthetic efficiency. Environ. Pollut. 243: 912–918.CrossrefGoogle Scholar

  • FAO. 2018a. The state of world fisheries and aquaculture 2018. Food and Agriculture Organization of the United Nations. Rome, Italy. pp. 227.Google Scholar

  • FAO. 2018b. Fishery statistical collections. Food and Agriculture Organization of the United Nations. Rome, Italy. http://www.fao.org/fishery/statistics/.

  • Fernand, F., A. Israel, J. Skjermo, T. Wichard, K.R. Timmermans and A. Golberg. 2016. Offshore macroalgae biomass for bioenergy production: environmental aspects, technological achievements and challenges. Renew. Sust. Energ. Rev. 75: 35–45.Google Scholar

  • Filbee-Dexter, K. and T. Wernberg. 2018. Rise of turfs: a new battle front for globally declining kelp forests. Bioscience 68: 4–76.Google Scholar

  • Filbee-Dexter, K., T. Wernberg, S. Fredriksen, K.M. Norderhaug and M.F. Pedersen. 2019. Arctic kelp forests: diversity, resilience and future. Glob. Planet. Change 172: 1–14.CrossrefGoogle Scholar

  • Frangoudes, K. 2011. Seaweeds fisheries management in France, Japan, Chile and Norway. Cah. Biol. Mar. 52: 517–525.Google Scholar

  • Fredriksen, S. 2003. Food web studies in a Norwegian kelp forest based on stable isotope analysis. Mar. Ecol. Prog. Ser. 260: 71–81.CrossrefGoogle Scholar

  • Fujita, D. 2011 Management of kelp ecosystem in Japan. Cah. Biol. Mar. 52: 499–505.Google Scholar

  • Fulton, C.J., R.A. Abesamis, C. Berkström, M. Depczynski, N.A.J. Graham, T.H. Holmes, M. Kulbicki, M.M. Noble, B.T. Radford, S. Tano, P. Tinkler, T. Wernberg and S.K. Wilson. 2019. Form and function of tropical macroalgal reefs in the Anthropocene. Funct. Ecol. 33: 989–999.CrossrefGoogle Scholar

  • Gaylord, B., J.H. Rosman, D.C. Reed, J.R. Koseff, J. Fram, S. MacIntyre, K. Arkema, C. McDonald, M.A. Brzezinski, J.L. Largier, S.G. Monismith, R.T. Raimondi and B. Mardian. 2007. Spatial patterns of flow and their modification within and around a giant kelp forest. Limnol. Oceanogr. 52: 1838–1852.CrossrefGoogle Scholar

  • Graham, M.H. 2004. Effects of local deforestation on the diversity and structure of Southern California giant kelp forest food webs. Ecosystems 7: 341–357.Google Scholar

  • Harley, C.D.G., K.M. Anderson, K.W. Demes, J.P. Jorve, R.L. Kordas, T.A. Coyle and M.H. Graham. 2012. Effects of climate change on global seaweed communities. J. Phycol. 48: 1064–1078.CrossrefGoogle Scholar

  • Holden, J.J., S.K. MacNeill, F. Juanes and S.E. Dudas. 2018. Beach-cast deposition and commercial harvesting of a non-indigenous alga, Mazzaella japonica: Implications for macrofauna communities in Baynes Sound, British Columbia. Est. Coast. Shelf Sci. 210: 162–171.CrossrefGoogle Scholar

  • Hyndes, G.A., I. Nagelkerken, R.J. McLeod, R.M. Connolly, P.S. Lavery and M.A. Vanderklift. 2014. Mechanisms and ecological role of carbon transfer within coastal seascapes. Biol. Rev. 89: 232–254.CrossrefGoogle Scholar

  • Jenkins, S.R., T.A. Norton and S.J. Hawkins. 2004. Long term effects of Ascophyllum nodosum canopy removal on mid shore community structure. J. Mar. Biol. Assoc. UK 84: 327–329.CrossrefGoogle Scholar

  • Jennings, S. and M.J. Kaiser. 1998. The effects of fishing on marine ecosystems. In: (Blaxter, J.H.S., A.J. Southward and P.A. Tyler, eds) Advances in marine biology. Academic Press, London. pp. 201–352.Google Scholar

  • Jonsson, R.R., J. Kotta, H.C. Andersson, K. Herkül, E. Virtanen, A.N. Sandman and K. Johannesson. 2018. High climate velocity and population fragmentation may constrain climate-driven range shift of the key habitat former Fucus vesiculosus. Div. Distr. 24: 892–905.CrossrefGoogle Scholar

  • Kay, L. 2015. Canopy and community structure of rockweed beds in Nova Scotia and New Brunswick: regional variation and effects of commercial harvest and proximity to aquaculture. Master’s thesis, Dalhousie University, Halifax, Canada. pp. 234.Google Scholar

  • Kay, L., T.D. Eddy, A.L. Schmidt and H.K. Lotze. 2016. Regional differences and linkage between canopy structure and community composition of rockweed habitats in Atlantic Canada. Mar. Biol. 163: 251.CrossrefGoogle Scholar

  • Krumhansl, K.A. and R.E. Scheibling. 2012. Production and fate of kelp detritus. Mar. Ecol. Prog. Ser. 467: 281–302.CrossrefGoogle Scholar

  • Krumhansl, K.A., J.N. Bergman and A.K. Salomon. 2017. Assessing the ecosystem-level consequences of a small-scale artisanal kelp fishery within the context of climate change. Ecol. Appl. 27: 799–813.CrossrefGoogle Scholar

  • Long, R.D., A. Charles and R.L. Stephenson. 2015. Key principles of marine ecosystem-based management. Mar. Policy 57: 53–60.CrossrefGoogle Scholar

  • Lorentsen, S.-H., K. Sjøtun and D. Grémillet. 2010. Multi-trophic consequences of kelp harvest. Biol. Cons. 143: 2054–2062.CrossrefGoogle Scholar

  • Lotze, H.K. and B. Worm. 2009. Historical baselines for large marine animals. Trends Ecol. Evol. 24: 254–262.CrossrefGoogle Scholar

  • Mac Monagail, M., L. Cornish, L. Morrison, R. Araújo and A.T. Critchley. 2017. Sustainable harvesting of wild seaweed resources. Eur. J. Phycol. 52: 371–390.CrossrefGoogle Scholar

  • Maggi, E., L. Benedetti-Cecchi, A. Castelli, E. Chatzinikolaou, T.P. Crowe, G. Ghedini, J. Kotta, D.A. Lyons, C. Ravaglioli, G. Rilov, L. Rindi and F. Bulleri. 2015. Ecological impacts of invading seaweeds: a meta-analysis of their effects at different trophic levels. Div. Distr. 21: 1–12.CrossrefGoogle Scholar

  • Meland, M. and C. Rebours. 2012. Short description of the Norwegian seaweed industry. Bioforsk Fokus 7: 278–279.Google Scholar

  • Murphy, G.E.P., M. Wong and H.K. Lotze. 2019. A human impact metric for coastal ecosystems with application to seagrass beds in Atlantic Canada. Facets 4: 210–237.CrossrefGoogle Scholar

  • Murray, C.C., S. Agbayani, H.M. Alidini and N.C. Ban. 2015. Advancing marine cumulative effects mapping: an update in Canada’s Pacific waters. Mar. Policy 58: 71–77.CrossrefGoogle Scholar

  • Nayar, S. and K. Bott. 2014. Current status of global cultivate seaweed production and markets. World Aquacult. 45: 32–37.Google Scholar

  • Olds, A.D., R.M. Connolly, K.A. Pitt, S.J. Pittman, P.S. Maxwell, C.M. Huijbers, B.R. Moore, S. Albert, D. Rissik, R.C. Babcock and T.A. Schlacher. 2016. Quantifying the conservation value of seascape connectivity: a global synthesis. Glob. Ecol. Biogeogr. 25: 3–15.CrossrefGoogle Scholar

  • Oróstica, M.H., M.A. Aguilera, G.A. Donoso, J.A. Vásquez and B.R. Broitman. 2014. Effect of grazing on distribution and recovery of harvested stands of Lessonia berteroana kelp in northern Chile. Mar. Ecol. Prog. Ser. 511: 71–78.CrossrefGoogle Scholar

  • Ortiz, M. 2010. Dynamic and spatial models of kelp forest of Macrocystis pyrifera and Lessonia trabeculata (SE Pacific) for assessment harvest scenarios: short-term responses. Aquat. Cons. 20: 494–506.CrossrefGoogle Scholar

  • Pérez-Matus, A., S.A. Carrasco, S. Gelcich, M. Fernandez and E.A. Wieters. 2017. Exploring the effects of fishing pressure and upwelling intensity over subtidal kelp forest communities in central Chile. Ecosphere 8: e01808.CrossrefGoogle Scholar

  • Pessarrodona, A., P.J. Moore, M.D.J. Sayer and D.A. Smale. 2018. Carbon assimilation and transfer through kelp forests in the NE Atlantic is diminished under a warmer ocean climate. Glob. Chang. Biol. 24: 4386–4398.CrossrefGoogle Scholar

  • Pikitch, E.K., C. Santora, E.A. Babcock, A. Bakun, R. Bonfil, D.O. Conover, P. Dayton, P. Doukakis, D. Fluharty, B. Heneman, E.D. Houde, J. Link, P.A. Livingston, M. Mangel, M.K. McAllister, J. Pope and K.J. Sainsbury. 2004. Ecosystem-based fishery management. Science 305: 346–347.CrossrefGoogle Scholar

  • PIRSA. 2014. Ecological assessment of the South Australian beach-cast seagrass and marine algae fishery. Primary Industries and Resources South Australia, Adelaide. pp. 60.Google Scholar

  • Pitcher, T.J., D. Kalikoski, K. Short, D. Varkey and G. Pramod. 2009. An evaluation of progress in implementing ecosystem-based management of fisheries in 33 countries. Mar. Policy 33: 223–232.CrossrefGoogle Scholar

  • Rangeley, R.W. and J. Davies. 2000. Gulf of Maine rockweed: management in the face of scientific uncertainty. Huntsman Marine Science Centre Occasional Report No. 00/1.Google Scholar

  • Schmidt, A.L., M. Coll, T. Romanuk and H.K. Lotze. 2011. Ecosystem structure and services in eelgrass (Zostera marina) and rockweed (Ascophyllum nodosum) habitats. Mar. Ecol. Prog. Ser. 437: 51–68.CrossrefGoogle Scholar

  • Seeley, R.H. and W.H. Schlesinger. 2012. Sustainable seaweed cutting? The rockweed (Ascophyllum nodosum) industry of Maine and the Martitime Provinces. Ann. NY Acad. Sci. 1249: 84–103.CrossrefGoogle Scholar

  • Seitz, R.D., H. Wennhage, U. Bergström, R.N. Lipcius and T. Ysebaert. 2014. Ecological value of coastal habitats for commercially and ecologically important species. ICES J. Mar. Sci. 71: 648–665.CrossrefGoogle Scholar

  • Sharp, G.J. and J.D. Pringle. 1990. Ecological impact of marine plant harvesting in the northwest Atlantic: a review. Hydrobiologia 204/205: 17–24.CrossrefGoogle Scholar

  • Sharp, G.J., R. Ugarte and R.E. Semple. 2006. The ecological impact of marine plant harvesting in the Canadian Maritimes, implications for coastal zone management. Sci. Asia 32: 77–86.Google Scholar

  • Smale, D.A., M.T. Burrows, P. Moore, N. O’Connor and S.J. Hawkins. 2013. Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective. Ecol. Evol. 3: 4016–4038.CrossrefGoogle Scholar

  • Springer, Y.P., C.G. Hays and M.H. Carr. 2010. Towards ecosystem-based management of marine macroalgae – the bull kelp Nereocystis luetkeana. Oceanogr. Mar. Biol. Ann. Rev. 48: 1–41.Google Scholar

  • Stagnol, D., M. Renaud and D. Davoult. 2013. Effects of commercial harvesting of intertidal macroalgae on ecosystem biodiversity and functioning. Est. Coast. Shelf Sci. 130: 99–110.CrossrefGoogle Scholar

  • Stagnol, D., R. Michel and D. Davoult. 2016. Unravelling the impact of harvesting pressure on canopy-forming macroalgae. Mar. Freshw. Res. 67: 153–161.CrossrefGoogle Scholar

  • Steen, H., F.E. Moy, T. Bodvin and V. Husa. 2016. Regrowth after kelp harvesting in Nord-Trøndelag, Norway. ICES J. Mar. Sci. 73: 2708–2720.CrossrefGoogle Scholar

  • Subba Rao, P.V. and V.A. Mantri. 2006. Indian seaweed resources and sustainable utilization: scenario at the dawn of a new century. Curr. Sci. 91: 164–174.Google Scholar

  • Teagle, H., S.J. Hawkins, P.J. Moore and D.A. Smale. 2017. The role of kelp species as biogenic habitat formers in coastal marine ecosystems. J. Exp. Mar. Biol. Ecol. 492: 81–98.CrossrefGoogle Scholar

  • Tognelli, M.F., M. Fernandez and P.A. Marquet. 2009. Assessing the performance of the existing and proposed network of marine protected areas to conserve marine biodiversity in Chile. Biol. Cons. 142: 3147–3153.CrossrefGoogle Scholar

  • Trono, G.C. 1999. Diversity of the seaweed flora of the Philippines and its utilization. Hydrobiologia 398/399: 1–6.CrossrefGoogle Scholar

  • Ugarte, R.A., G. Sharp and B. Moore. 2006. Changes in the brown seaweed Ascophyllum nodosum (L.) Le Jol. morphology and biomass produced by cutter rake harvests in southern New Brunswick, Canada. J. Appl. Phycol. 18: 351–359.CrossrefGoogle Scholar

  • Ugarte, R., J.S. Craigie and A.T. Critchley. 2010. Fucoid flora of the rocky intertidal of the Canadian Maritimes: implications for the future with rapid climate change. In: (Isreal, A., R. Einav, J. Seckbach, eds) Seaweeds and their role in globally changing environments. Springer, Dordrecht. pp. 73–90.Google Scholar

  • UNEP. 2011. Taking steps toward marine and coastal ecosystem-based management – an introductory guide. United Nations Environment Program, Regional Seas Reports and Studies 189.Google Scholar

  • Vásquez, J.A., N. Piaget and J.M.A. Vega. 2012. The Lessonia nigrescens fishery in northern Chile: “how you harvest is more important than how much you harvest”. J. Appl. Phycol. 24: 417–426.CrossrefGoogle Scholar

  • Vea, J. and E. Ask. 2011. Creating a sustainable commercial harvest of Laminaria hyperborea, in Norway. J. Appl. Phycol. 23: 489–494.CrossrefGoogle Scholar

  • Vega, J.M.A., B.R. Broitman and J.A. Vásquez. 2014. Monitoring the sustainability of Lessonia nigrescens (Laminariales, Phaeophyceae) in northern Chile under strong harvest pressure. J. Appl. Phycol. 26: 791–801.CrossrefGoogle Scholar

  • Vetter, E.W. and P.K. Dayton. 1999. Organic enrichment by macrophyte detritus, and abundance patterns of megafaunal populations in submarine canyons. Mar. Ecol. Prog. Ser. 186: 137–148.CrossrefGoogle Scholar

  • Waage-Nielsen, E., H. Christie and E. Rinde. 2003. Short-term dispersal of kelp fauna to cleared (kelp-harvested) areas. Hydrobiologia 503: 77–91.CrossrefGoogle Scholar

  • Wernberg, T., S. Bennett, R.C. Babcock, T. de Bettignies, K. Cure, M. Depczynski, F. Dufois, J. Fromont, C.J. Fulton, R.K. Hovey, E.S. Harvey, T.H. Holmes, G.A. Kendrick, B. Radford, J. Santana-Garcon, B.J. Saunders, D.A. Smale, M.S. Thomsen, C.A. Tuckett, F. Tuya, M.A. Vanderklift and S. Wilson. 2016. Climate-driven regime shift of a temperate marine ecosystem. Science 353: 169–172.CrossrefGoogle Scholar

  • Werner, A. and S. Kraan. 2004. Review of the potential mechanization of kelp harvesting in Ireland. Marine Environment and Health Series 17. Marine Institute 2004.Google Scholar

  • Wilson, K.L., M.A. Skinner and H.K. Lotze. 2019. Projected 21st century distribution of canopy-forming seaweeds in the Northwest Atlantic with climate change. Div. Distr. 25: 582–602.CrossrefGoogle Scholar

  • Worm, B. and H.K. Lotze. 2006. Effects of eutrophication, grazing, and algal blooms on rocky shores. Limnol. Oceanogr. 51: 569–579.CrossrefGoogle Scholar

  • Worm, B. and H.K. Lotze. 2016. Marine biodiversity and climate change. In: (T. Letcher, ed) Climate and global change: observed impacts on Planet Earth. 2nd edition. Elsevier, Amsterdam, The Netherlands. pp. 195–212.Google Scholar

  • Worm, B., R. Hilborn, J.K. Baum, T.A. Branch, J.S. Collie, C. Costello, M.J. Fogarty, E.A. Fulton, J.A. Hutchings, S. Jennings, O.P. Jensen, H.K. Lotze, P.A. Mace, T.R. McClanahan, C. Minto, S.R. Palumbi, A.M. Parma, D. Ricard, A.A. Rosenberg, R. Watson and D. Zeller. 2009. Rebuilding global fisheries. Science 325: 578–585.CrossrefGoogle Scholar

  • Zemke-White, W.L. and M. Ohno. 1999. World seaweed utilization: End of century summary. J. Appl. Phycol. 11: 369–376.CrossrefGoogle Scholar

  • Zemke-White, W.L., S.R. Speed and D.J. McClary. 2005. Beach-cast seaweed: a review. New Zealand Fisheries Assessment Report 2005/44. pp. 47.Google Scholar

About the article

Heike K. Lotze

Heike K. Lotze is a Professor of Marine Ecology at Dalhousie University in Halifax, Canada and Canada Research Chair in Marine Renewable Resource (2006–2016). Ever since her first research project on seaweeds, Heike’s research has focused on human-induced changes in marine populations, communities and ecosystems, and how we can improve management and conservation to sustain the structure and functions of marine ecosystems and the services they provide for human well-being.

Inka Milewski

Inka Milewski is a Research Associate at Dalhousie University in Halifax, Canada and has been a Science Advisor for several non-governmental organizations in Canada for over 20 years. Her research is focused on quantifying the effects of pollution, nutrient loading, habitat alteration, fisheries, and aquaculture on marine ecosystems with a goal to inform policy and the public on resource management and conservation issues.

Julia Fast

Julia Fast is currently completing her Bachelor of Science with a double major in Biology and Environmental Science at Dalhousie University in Nova Scotia, Canada. Julia is broadly interested in the effects of humans on marine ecosystems and species, and has been a Research Assistant in Heike Lotze’s lab working on the management of seaweed harvesting around the world and the impacts of nutrient loading on coastal ecosystems.

Lauren Kay

Lauren Kay graduated with a MSc in Marine Biology from Dalhousie University in Halifax, Canada in 2015. Both her undergraduate and graduate research projects focused on rockweed habitats along the Canadian shoreline, including the effects of nutrient loading, harvesting and climate change on rockweed growth and survival as well as canopy and community structure. She currently lives in Montreal and is studying Medicine at McGill University.

Boris Worm

Boris Worm is a Killam Research Professor of Marine Conservation Biology at Dalhousie University in Halifax, Canada. His work focuses on documenting and understanding changes in marine biodiversity, as well as finding science-based solutions for marine conservation and management at regional and global scales.


Received: 2019-04-29

Accepted: 2019-07-30

Published Online: 2019-08-23

Published in Print: 2019-09-25


Funding Source: Natural Sciences and Engineering Research Council of Canada

Award identifier / Grant number: RGPIN-2014-04491

Award identifier / Grant number: RGPIN-2017-05118

Financial support was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC, Funder Id: http://dx.doi.org/10.13039/501100000038, Grant Numbers: RGPIN-2014-04491 and RGPIN-2017-05118) with grants to HKL and BW.


Citation Information: Botanica Marina, Volume 62, Issue 5, Pages 395–409, ISSN (Online) 1437-4323, ISSN (Print) 0006-8055, DOI: https://doi.org/10.1515/bot-2019-0027.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in