Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Botanica Marina

Editor-in-Chief: Dring, Matthew J.

6 Issues per year

IMPACT FACTOR 2016: 1.239
5-year IMPACT FACTOR: 1.373

CiteScore 2016: 1.28

SCImago Journal Rank (SJR) 2016: 0.456
Source Normalized Impact per Paper (SNIP) 2016: 0.841

See all formats and pricing
More options …
Volume 58, Issue 2 (Apr 2015)


Molecular evidence for verifying the distribution of Chondracanthus chamissoi and C. teedei (Gigartinaceae, Rhodophyta)

Mi Yeon Yang / Erasmo C. Macaya
  • Laboratorio de Estudios Algales (ALGALAB), Departmento de Oceanografía, Casilla 160-C, Universidad de Concepción, Concepción, Chile
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Myung Sook Kim
Published Online: 2015-03-21 | DOI: https://doi.org/10.1515/bot-2015-0011


Chondracanthus teedei and C. chamissoi are regarded as cosmopolitan and endemic species, respectively. To verify the geographic distribution of these two species, we analyzed specimens of C. teedei from the Western Pacific and the Atlantic coast of Spain, as well as of C. chamissoi from Chile using plastid rbcL and mitochondrial COI genes. The phylogenetic tree of rbcL revealed that “C. teedei” from Asia and Chondracanthus sp. from France are conspecific with C. chamissoi from Chile, but distinct from the clade of C. teedei from the Atlantic. These results indicate that C. chamissoi is not exclusively distributed in the southeastern Pacific, but is also found in Korea/Japan and France, whereas C. teedei is found in the Atlantic and not in the western Pacific region. This study demonstrated that the range of C. chamissoi is wider than previously thought, raising interesting questions regarding the transportation vector and the absence of C. teedei from Korea and Japan. In addition, we confirmed that molecular analyses can be used to examine the geographic distribution of marine macroalgae.

Keywords: Chondracanthus; C. chamissoi; C. teedei; COI; distribution; rbcL; Rhodophyta


  • Acleto, C.O. 1986. Algunos aspectos biológicos de Gigartina chamissoi (C. Ag.) J. Agardh (Rhodophyta, Gigartinales). Rev. Ciencias. UNMSM 74: 38–47.Google Scholar

  • Agardh, J.G. 1842. Algae maris Mediterranei et Adriatici, observationes in diagnosin specierum et dispositionem generum. Apud Fortin, Masson et Cie, Parisiis (Paris). pp. 164.Google Scholar

  • Avila, M., M.I. Piel, J.H. Caceres and K. Alveal. 2011. Cultivation of the red alga Chondracanthus chamissoi: sexual reproduction and seedling production in culture under controlled conditions. J. Appl. Phycol. 23: 529–536.Web of ScienceCrossrefGoogle Scholar

  • Boletín Estadístico Marítimo. 2014. Armada de Chile, Dirección General del Territorio Marítimo y Marina Mercante. Available at: www.directemar.cl. Accessed on January 5 2015.

  • Boo, G.H., A. Mansilla, W. Nelson, A. Bellgrove and S.M. Boo. 2014. Genetic connectivity between trans-oceanic populations of Capreolia implexa (Gelidiales, Rhodophyta) in cool temperate waters of Australasia and Chile. Aquat. Bot. 119: 73–79.Web of ScienceGoogle Scholar

  • Bulboa, C. and J.E. Macchiavello. 2001. The effects of light and temperature on different phases of the life cycle in the carrageenan producing alga Chondracanthus chamissoi (Rhodophyta, Gigartinales). Bot. Mar. 44: 371–374.Google Scholar

  • Bulboa, C., K. Veliz, F. Saez, C. Sepúlveda, L. Vega and J. Macchiavello. 2013. A new method for cultivation of the carragenophyte and edible red seaweed Chondracanthus chamissoi based on secondary attachment disc: development in outdoors tanks. Aquaculture. 410–411: 86–94.Google Scholar

  • Carlton, J.T. and J. Hodder. 1995. Biogeography and dispersal of coastal marine organisms: experimental studies on a replica of a 16th-century sailing vessel. Mar. Bio. 121: 721–730.Google Scholar

  • Clarkston, B.E. and G.W. Saunders. 2012. An examination of the red algal genus Pugetia (Kallymeniaceae, Gigartinales), with descriptions of Salishia firma gen. & comb. nov., Pugetia cryptica sp. nov. and Beringia wynnei sp. nov. Phycologia 51: 33–61.CrossrefGoogle Scholar

  • Dixon, P.S. and L.M. Irvine. 1977. Seaweeds of the British Isles. Volume 1. Rhodophyta. Part 1. Introduction, Nemaliales, Gigartinales. British Museum (Natural History), London. pp. 252.Google Scholar

  • Freshwater, D.W., K. Tudor, K. O’Shaughnessy and B. Wysor. 2010. DNA barcoding in the red algal order Gelidiales: comparison of COI with rbcL and verification of the “barcoding gap”. Cryp. Algol. 31: 435–449.Google Scholar

  • Guiry, M.D. 1984. Structure, life history and hybridization of Atlantic Gigartina teedii (Rhodophyta) in culture. Bri. Phycol. J. 19: 37–55.Google Scholar

  • Guiry, M.D. and G.M. Guiry. 2014. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available at: http://www.algaebase.org. Accessed on May 5 2014.

  • Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41: 95–98.Google Scholar

  • Hoffmann, A. and B. Santelices. 1997. Flora marina de Chile Central. Marine flora of central Chile. Ediciones Universidad Católica de Chile, Santiago. pp. 434.Google Scholar

  • Hommersand, M.H., S. Fredericq and D.W. Freshwater. 1994. Phylogenetic systematics and biogeography of the Gigartinaceae (Gigartinales, Rhodophyta) based on sequence analysis of rbcL. Bot. Mar. 37: 193–203.Google Scholar

  • Hughey, J.R. and M.H. Hommersand. 2008. Morphological and molecular systematic study of Chondracanthus (Gigartinaceae, Rhodophyta) from Pacific North America. Phycologia 47: 124–155.CrossrefWeb of ScienceGoogle Scholar

  • Hughey, J.R. and M.H. Hommersand. 2010. A molecular study of Mazzaella (Gigartineaceae, Rhodophyta) and morphological investigation of the splendens clade from Pacific North America. Phycologia 49: 113–135.CrossrefWeb of ScienceGoogle Scholar

  • Kang, J.W. 1968. Illustrated encyclopedia of fauna and flora of Korea. Volume 8. Marine algae. Samhwa Press, Seoul. pp. 466.Google Scholar

  • Kim, M.S., S.Y. Kim and W. Nelson. 2010. Symphocladia lithophila sp. nov. (Rhodomelaceae, Ceramiales), a new Korean red algal species based on morphology and rbcL sequences. Bot. Mar. 53: 233–241.Google Scholar

  • Lane, C.E., S.C. Lindstrom and G.W. Saunders. 2007. A molecular assessment of northeast Pacific Alaria species (Laminariales, Phaeophyceae) with reference to the utility of DNA barcoding. Mol. Phylogenet. Evol. 44: 634–648.Web of ScienceCrossrefPubMedGoogle Scholar

  • Le Gall, L. and G.W. Saunders. 2010a. DNA barcoding is a powerful tool to uncover algal diversity: a case study of the Phyllophoraceae (Gigartinales, Rhodophyta) in the Canadian flora. J. Phycol. 46: 374–389.Web of ScienceCrossrefGoogle Scholar

  • Le Gall, L. and G.W. Saunders. 2010b. Establishment of a DNA-barcode library for the Nemaliales (Rhodophyta) from Canada and France uncovers overlooked diversity in the species Nemalion helminthoides (Velley) Batters. Crypto. Algol. 31: 403–421.Google Scholar

  • Lee, Y. and S. Kang. 2001. A catalogue of the seaweeds in Korea. Cheju National University Press, Jeju. pp. 662.Google Scholar

  • Mikami, H. 1965. A systematic study of the Phyllophoraceae and Gigartinaceae from Japan and its vicinity. Mem. Fac. Fish. Hokkaido U. 5: 181–285.Google Scholar

  • Mineur, F., A.L. Roux, H. Stegenga, M. Verlaque and C.A. Maggs. 2012. Four new exotic red seaweeds on European shores. Biol. Invasions 14: 1635–1641.CrossrefWeb of ScienceGoogle Scholar

  • Nelson, W.A., S.Y. Kim, R. D’Archino and S.M. Boo. 2013. The first record of Grateloupia subpectinata from the New Zealand region and comparison with G. prolifera, a species endemic to the Chatham Islands. Bot. Mar. 56: 507–513.Web of ScienceGoogle Scholar

  • Nelson, W.A., J.E. Sutherland, M.S. Hwang and H.G. Choi. 2014. New distributional record for Pyropia koreana: confirmed to occur on the South Island, New Zealand. Algae 29: 177–181.CrossrefWeb of ScienceGoogle Scholar

  • Raffo, M.P., A. Geoffroy, C. Destombe and E. Schwindt. 2014. First record of the invasive red alga Polysiphonia morrowii Harvey (Rhodomelaceae, Rhodophyta) on the Patagonian shores of the Southwestern Atlantic. Bot. Mar. 57: 21–26.Google Scholar

  • Ramírez, M.E. and B. Santelices. 1991. Catálogo de algas bentónicas de las costas temperadas del Pacífico temperado de Sudamérica. Monografías Biológicas (Chile) 5: 1–499.Google Scholar

  • Saunders, G.W. 2005. Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Philos. T. Roy. Soc. B 360: 1879–1888.CrossrefGoogle Scholar

  • Saunders, G.W. and K.V. Lehmkuhl. 2005. Molecular divergence and morphological diversity among four cryptic species of Plocamium (Plocamiales, Florideophyceae) in northern Europe. Eur. J. Phycol. 40: 293–312.CrossrefGoogle Scholar

  • Schneider, C.W. and C.E. Lane. 2005. Notes on the marine algae of the Bermudas. 7. Additions to the flora, including Chondracanthus saundersii sp. nov. (Rhodophyta, Gigartinaceae) based on rbcL sequence analysis. Phycologia 44: 72–83.CrossrefGoogle Scholar

  • Schneider, C.W., T. Chengsupanimit and G.W. Saunders. 2011. A new genus and species from the North Atlantic, Archestenogramma profundum (Phyllophoraceae, Rhodophyta), with taxonomic resolution of the orphaned Leptofauchea brasiliensis. Eur. J. Phycol. 46: 442–452.CrossrefWeb of ScienceGoogle Scholar

  • Sáez, F., J. Macchiavello, E. Fonck and C. Bulboa. 2008. The role of the secondary attachment disc in the vegetative propagation of Chondracanthus chamissoi (Gigartinales; Rhodophyta). Aquat. Bot. 89: 63–65.Google Scholar

  • Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690.PubMedCrossrefGoogle Scholar

  • Tamura, K., J. Dudley, M. Nei and S. Kumar. 2007. MEGA 4: molecular evolutionary genetic analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596–1599.Google Scholar

  • Vergés, A., N. Comalada, N. Sánchez and J. Brodie. 2013. A reassessment of the foliose Bangiales (Rhodophyta) in the Balearic Islands including the proposed synonymy of Pyropia olivii with Pyropia koreana. Bot. Mar. 56: 229–240.Google Scholar

  • Verlaque, M., P.M. Brannock, T. Komatsu, M. Villalard-Bohnsack and M. Marston. 2005. The genus Grateloupia C. Agardh (Halymeniaceae, Rhodophyta) in the Thau Lagoon (France, Mediterranean): a case study of marine plurispecific introductions. Phycologia 44: 477–496.CrossrefGoogle Scholar

  • Yang, M.Y., E.G. Han and M.S. Kim. 2013. Molecular identification of Grateloupia elliptica and G. lanceolata (Rhodophyta) inferred from plastid rbcL and mitochondrial COI genes sequence data. Genes. Genom. 35: 239–246.Google Scholar

  • Yoshida, T. 1998. Marine algae of Japan. Uchida Rokakuho Publishing Co., Ltd, Tokyo. pp. [1–2], 1–25, 1–1222.Google Scholar

  • Zuccarello, G.C., J.A. West and J. Rueness. 2002. Phylogeography of the cosmopolitan red alga Caulacanthus ustulatus (Caulacanthaceae, Gigartinales). Phycol. Res. 50:163–172.Google Scholar

About the article

Mi Yeon Yang

Mi Yeon Yang is a PhD student at Jeju National University, Jeju, Korea. She was awarded a MSc in Molecular Phylogeny for her work on the molecular phylogeny and DNA barcoding of the Gracilariaceae (Marine Algal Laboratory, Jeju National University). For her PhD research, Ms. Yang is working on the red algal order Gigartinales from Korea.

Erasmo C. Macaya

Erasmo C. Macaya has been an Assistant Professor at Concepción University, Chile since 2010. He received a primary degree in Marine Biology and a Master’s in Marine Sciences from Universidad Catolica del Norte, Coquimbo, Chile. He obtained a PhD in Marine Biology from Victoria University, Wellington, New Zealand studying the dispersal patterns, connectivity, taxonomy and genetic diversity of the giant kelp, Macrocystis pyrifera. His research focuses on the different aspects of macroalgae, such as ecology, taxonomy and phylogeography, among others.

Myung Sook Kim

Myung Sook Kim is a Professor of Biology at Jeju National University, Jeju, Korea. She was awarded a PhD in Algal Systematics by the Seoul National University, Korea for her work on the taxonomic revision of Polysiphonia. She has studied systematics in Rhodophyta for over 15 years, especially in the family Rhodomelaceae. Her more recent research has concentrated on establishing a DNA barcode database for Korean seaweeds to identify species and genus correctly.

Corresponding author: Myung Sook Kim, Department of Biology, Jeju National University, 102 Jejudaehakno, Korea, e-mail:

Received: 2015-01-26

Accepted: 2015-03-05

Published Online: 2015-03-21

Published in Print: 2015-04-01

Citation Information: Botanica Marina, ISSN (Online) 1437-4323, ISSN (Print) 0006-8055, DOI: https://doi.org/10.1515/bot-2015-0011.

Export Citation

©2015 by De Gruyter. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in