Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Botanica Marina

Editor-in-Chief: Dring, Matthew J.


IMPACT FACTOR 2018: 0.919
5-year IMPACT FACTOR: 1.336

CiteScore 2018: 1.22

SCImago Journal Rank (SJR) 2018: 0.399
Source Normalized Impact per Paper (SNIP) 2018: 0.672

Online
ISSN
1437-4323
See all formats and pricing
More options …
Ahead of print

Issues

Solar irradiation as an alternative bleaching process for agar extracted from Gracilariopsis heteroclada in Iloilo, Philippines

Leonilo F. EndomaORCID iD: https://orcid.org/0000-0001-7706-0747 / Loda M. Nacional
  • Institute of Fish Processing Technology, College of Fisheries and Ocean Sciences, University of the Philippines Visayas, Miagao, Iloilo 5023, Philippines
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rovilla J. Luhan
Published Online: 2019-07-30 | DOI: https://doi.org/10.1515/bot-2018-0120

Abstract

The current industrial practice of using chemical bleach to achieve the pure white colour of agar is deleterious to both human and environmental health. This study evaluates the potential of solar irradiation as an alternative bleaching process for agar extracted from Gracilariopsis heteroclada in Iloilo, Philippines. The physico-chemical properties of agar obtained from alkaline-treated seaweed after exposure to different bleaching conditions (e.g. solar irradiation, hypochlorite solution, and ultraviolet and fluorescent lights) were examined and compared with commercial bacteriological agar. Photobleaching through solar irradiation produced agar with superior gel strength (1038.61 g cm−2), high 3,6-anhydrogalactose content (41.44%) and low total inorganic sulphate content (1.87%) without compromising agar yield (19.37%). Solar irradiation offers very promising results as a simple, low-cost, environmentally friendly alternative to the chlorine bleaching process for agar extraction.

Keywords: agar extraction; chemical bleaching; Gracilariopsis heteroclada; low-cost and environmentally friendly; photobleaching

References

  • Araño, K.G., G.C. Trono Jr., N.E. Montaño, A.Q. Hurtado and R.D. Villanueva. 2000. Growth, agar yield and quality of selected agarophyte species from the Philippines. Bot. Mar. 43: 517–524.Google Scholar

  • Arar, E.J. 1997. Method 446.0: In vitro determination of chlorophylls a, b, c + c and pheopigments in marine and freshwater algae by visible spectrophotometry. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-15/005.Google Scholar

  • Armisen, R. and F. Galatas. 2000. Agar. In: (G. Phillips and P. Williams, eds) Handbook of hydrocolloids. CRC Press, Florida. pp. 21–40.Google Scholar

  • Boral, S., A. Saxena and H.B. Bohidar. 2010. Syneresis in agar hydrogels. Int. J. Biol. Macromolec. 46: 232–236.CrossrefGoogle Scholar

  • Craigie, J.S. and C. Leigh. 1978. Carrageenans and agars. In: (J.A. Hellebust and J.S. Craigie, eds) Handbook of phycological methods: physiological and biochemical methods. Cambridge University Press, Cambridge. pp. 109–132.Google Scholar

  • Craigie, J.S. and Z.C. Wen. 1984. Effects of temperature and tissue age on gel strength and composition of agar from Gracilaria tikvahiae (Rhodophyceae). Can. J. Bot. 62: 1665–1670.CrossrefGoogle Scholar

  • Cregut, M. and E. Rondags. 2013. Review: new insights in agar biorefinery with arylsulphatase activities. Process Biochem. 48: 1861–1871.CrossrefGoogle Scholar

  • Fiszman, S.M. and L. Duran. 1992. Effect of fruit pulp and sucrose on the compression response of different polysaccharide gel systems. Carbohydr. Polym 17: 11–17.CrossrefGoogle Scholar

  • Freile-Pelegrin, Y. and E. Murano. 2005. Agars from three species of Gracilaria (Rhodophyta) from Yucatan Peninsula. Bioresour. Technol. 96: 295–302.CrossrefGoogle Scholar

  • Freile-Pelegrin, Y. and D. Robledo. 1997. Influence of alkali treatment on agar from Gracilaria cornea from Yucatan, Mexico. J. Appl. Phycol. 9: 533–539.Google Scholar

  • Gao, H. and R. Zepp. 1998. Factors influencing photoreactions of dissolved organic matter in a coastal river of the Southeastern United States. Environ. Sci. Technol. 32: 2940–2946.CrossrefGoogle Scholar

  • Hurtado-Ponce, A.Q. 1992. Rheological properties of agar from Gracilariopsis heteroclada (Zhang et Xia) (Gracilariales, Rhodophyta) treated with powdered commercial lime and aqueous alkaline solution. Bot. Mar. 35: 365–370.Google Scholar

  • Hurtado-Ponce, A.Q. 1994. Agar production from Gracilariopsis heteroclada (Gracilariales, Rhodophyta) grown at different salinity levels. Bot. Mar. 37: 97–100.Google Scholar

  • Hurtado-Ponce, A.Q. 1995. Research on seaweeds and mollusks. In: (T.U. Bagarinao and E.E.C. Flores, eds) Towards sustainable aquaculture in Southeast Asia and Japan. SEAFDEC Aquaculture Department, Iloilo, Philippines. pp. 199–208.Google Scholar

  • Jackson, S.C. and E.L. McCandles. 1978. Simple, rapid, turbidometric determination of inorganic sulfate and/or protein. Anal. Biochem. 90: 802–808.CrossrefGoogle Scholar

  • Lahaye, M. 2001. Chemistry and physico-chemistry of phycocolloids. Cah. Biol. Mar. 42: 137–157.Google Scholar

  • Lahaye, M. and C. Rochas. 1991. Chemical structure and physico-chemical properties of agar. Hydrobiologia. 221: 137–148.CrossrefGoogle Scholar

  • Li, H., X. Yu, Y. Jin, W. Zhang and Y. Liu. 2008. Development of an eco-friendly agar extraction technique from the red seaweed Gracilaria lemaneiformis. Bioresour. Technol. 99: 3301–3305.Web of ScienceCrossrefGoogle Scholar

  • Li, H., J. Huang, Y. Xin, B. Zhang, Y. Jin and W. Zhang. 2009. Optimization and scale-up of a new photobleaching agar extraction process from Gracilaria lemaneiformis. J. Appl. Phycol. 21: 247–254.CrossrefWeb of ScienceGoogle Scholar

  • Luhan, M.R.J. 1992. Agar yield and gel strength of Gracilaria heteroclada collected from Iloilo, Central Philippines. Bot. Mar. 35: 169–172.Google Scholar

  • Luhan, M.R.J. 1996. Biomass and reproductive states of Gracilaria heteroclada Zhang et Xia collected from Jaro, Central Philippines. Bot. Mar. 39: 207–211.Google Scholar

  • Luhan, M.R.J., M.S.R. Ferrer, J. Tanaka and Y. Arugo. 2004. Monthly variation of agar quality of some Gracilaroids from the Philippines (Rhodophyta, Gracilariaceae). Philippine. Sci. 41: 22–35.Google Scholar

  • Luhan, M.R.J., F. Harder and A.Q. Hurtado. 2006. Growth and agar quality of Gracilaria heteroclada (Zhang et Xia) grown in a filter tank. Philipp. Agric. Sci. 89: 359–362.Google Scholar

  • Marinho-Soriano, E. and E. Bourret. 2005. Polysaccharides from the red seaweed Gracilaria dura (Gracilariales, Rhodophyta). Bioresour. Technol. 96: 379–382.CrossrefGoogle Scholar

  • Muñoz, J., V. Kumar and R. Fotedar. 2011. Seaweed culture with special reference to Latin America. In: (R.K. Fotedar and B.F. Phillips, eds) Recent advances and new species in aquaculture. Blackwell Publishing Ltd. pp. 252–276.Google Scholar

  • Murano, E., R. Gilli, L. Navarini, R. Toffanin, E. D’Agnolo, S. Paoletti and R. Rizzo. 1995. Ion-driven gelation of highly sulfate agar. J. Mar. Biotechnol. 3: 143–145.Google Scholar

  • Pereira, L., A.M. Amado, A.T. Critchley, F. de Velde and P.J.A. Ribeiro-Claro. 2009. Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman). Food Hydrocoll. 23: 1903–1909.CrossrefGoogle Scholar

  • Rebello, J., M. Ohno, H. Ukeda, H. Kusunose and M. Sawamura. 1997. 3,6-Anhydrogalactose, sulfate and methoxyl contents of commercial agarophytes from different geographical origins. J. Appl. Phycol. 9: 367–370.CrossrefGoogle Scholar

  • Reese, D.A. 1972. Shapely polysaccharides: the Eighth Colworth Medal Lecture. Biochem. J. 126: 257–273.CrossrefGoogle Scholar

  • Rochas, C., M. Lahaye and W. Yaphe. 1986. Sulfate content of carrageenan and agar determined by infrared spectroscopy. Bot. Mar. 29: 335–340.Google Scholar

  • Santander-Avanceña, S., M.R.J. Luhan and J. Felera-Panizales. 2015. Improved growth performance of Gracilariopsis heteroclada via short-term nitrogen enrichment. Bot. Mar. 58: 457–463.Web of ScienceGoogle Scholar

  • Stoloff, L.S. and C.F. Lee. 1949. Studies of bacteriological agar. Part I: physical and chemical properties. US Department of the Interior, Fish and Wildlife Service. Fishery Leaflet 335: 41.Google Scholar

  • Ursi, S., M. Pedersén, E. Plastino and P. Snoeijs. 2003. Intraspecific variation of photosynthesis, respiration and photoprotective carotenoids in Gracilaria birdiae (Gracilariales: Rhodophyta). Mar. Bio. 142: 997–1007.CrossrefGoogle Scholar

  • Villanueva, R.D., N.E. Montano, J.B. Romero, A.K.A. Aliganga and E.P. Enriquez. 1999. Seasonal variations in the yield, gelling properties and chemical composition of agars from Gracilaria eucheumoides and Gelidiella acerosa (Rhodophyta) from Philippines. Bot. Mar. 42: 175–182.Google Scholar

  • Warburton, R.N. 2005. Patient safety – how much is enough? Health Policy. 71: 223–232.CrossrefGoogle Scholar

  • White, C.W. and J.G. Martin. 2010. Chlorine gas inhalation: human clinical evidence of toxicity and experience in animal models. Proc. Am. Thorac. Soc. 7: 257–263.CrossrefGoogle Scholar

  • Yaphe, W. and G.P. Arsenault. 1965. Improved resorcinol reagent for the determination of fructose, and of 3,6-anhydrogalactose in polysaccharides. Anal. Biochem. 13: 143–148.CrossrefGoogle Scholar

About the article

Leonilo F. Endoma

Leonilo F. Endoma Jr. received his BSc in Fisheries in 2013 and MSc in Fisheries (Major in Fish Processing Technology) in 2016 at University of the Philippines Visayas. His interest is in utilisation and product development of seaweeds and other fishery commodity, and food biochemistry.

Loda M. Nacional

Loda M. Nacional is an Assistant Professor at the Institute of Fish Processing Technology, College of Fisheries and Ocean Sciences, University of the Philippines Visayas. Her research interests cover marine natural products, fish preservation, product development, food composition and utilisation of seaweeds.

Rovilla J. Luhan

Maria Rovilla J. Luhan is an Associate Scientist and Head of the FSES, SEAFDEC/AQD. Her interest is in mariculture of seaweeds, mainly Kappaphycus and Gracilaria. Recent work is on micropropagation, seed/spore production and nursery of seaweeds. This includes seaweed strain improvement and management of inland- and sea-based seaweed nurseries. Currently, she is the seaweed commodity team leader of SEAFDEC/AQD and a lecturer at the University of the Philippines Visayas.


Received: 2019-01-23

Accepted: 2019-06-28

Published Online: 2019-07-30


Citation Information: Botanica Marina, 20180120, ISSN (Online) 1437-4323, ISSN (Print) 0006-8055, DOI: https://doi.org/10.1515/bot-2018-0120.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in