Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Bulletin of the Polish Academy of Sciences Technical Sciences

The Journal of Polish Academy of Sciences

6 Issues per year


IMPACT FACTOR 2016: 1.156
5-year IMPACT FACTOR: 1.238

CiteScore 2016: 1.50

SCImago Journal Rank (SJR) 2016: 0.457
Source Normalized Impact per Paper (SNIP) 2016: 1.239

Open Access
Online
ISSN
2300-1917
See all formats and pricing
More options …
Volume 59, Issue 1

Issues

Numerical methods of solving equations of hydrodynamics from perspectives of the code FLASH

K. Murawski
  • Faculty of Mathematics, Physics and Informatics, UMCS, 10 Radziszewskiego St., 20-031 Lublin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ D. Lee
Published Online: 2011-08-19 | DOI: https://doi.org/10.2478/v10175-011-0012-3

Numerical methods of solving equations of hydrodynamics from perspectives of the code FLASH

In this paper we review numerical methods for hydrodynamic equations. Internal complexity make numerical solutions of these equations a formidable task. We present results of advanced numerical simulations for a complex system with a use of a publicly available code, FLASH. These results proof that the numerical methods cope very well with this task.

Keywords: numerical methods for hyperbolic equations; finite volume methods; Godunov-type methods

  • J. Trangenstein, Numerical Solution of Hyperbolic Partial Differential Equations, Cambridge University Press, Cambridge, 2008.Google Scholar

  • J. von Neumann and R.D. Richtmeyer, "A method for the numerical calculation of hydrodynamic shocks", J. Appl. Phys. 21, 232-237 (1950).Google Scholar

  • J.M. Stone and M.L. Norman, "ZEUS-2D: a radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. II. The magnetohydrodynamic algorithms and tests", Astrophys. J. Suppl. Ser. 80, 791-818 (1992).Google Scholar

  • K. Murawski and R.S. Steinolfson, "Numerical modeling of the solar wind interaction with Venus", Planet. Space Sci. 44 (3), 243-252 (1996).Google Scholar

  • S.K. Godunov, "A difference scheme for numerical solution of discontinuos solution of hydrodynamic equations", Math. Sb. 47, 271-306 (1959).Google Scholar

  • D. Lee and A.E. Deane, "An unsplit staggered mesh scheme for multidimensional magnetohydrodynamics", J. Comput. Phys. 228 (4), 952-975 (2009).Web of ScienceGoogle Scholar

  • J.J. Quirk, "An adaptive grid algorithm for computational shock hydrodynamics", PhD Thesis, College of Aeronautics, Cranfield Institute of Technology, Cranfield, 1991.Google Scholar

  • E. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, Berlin, 2009.Google Scholar

  • R.J. LeVeque, Numerical Methods for Conservation Laws, Birkhäuser Verlag Basel, Berlin, 1990.Google Scholar

  • A. Harten, P.D. Lax, and B. van Leer, "On upstream differencing and Godunov-type schemes for hyperbolic conservation laws", SIAM Rev. 25 (1), 35-61 (1983).CrossrefGoogle Scholar

  • B. Einfeld, "On Godunov-type methods for gas dynamics", SIAM J. Num. Anal. 25 (2), 294-318 (1988).Google Scholar

  • P.L. Roe, "Approximate Riemann solvers, parameter vectors and difference schemes", J. Comp. Phys. 43, 357-372 (1981).Google Scholar

  • N. Aslan, "Two-dimensional solutions of MHD equations with an adapted Roe method", Int. J. Numer. Meth. Fluids 23 (11), 1211-1222 (1996).Google Scholar

  • B. Einfeld, C.D. Munz, P.L. Roe, amd B. Sjögreen, "On Godunov-type methods near low densities", J. Comp. Phys. 92 (2), 273-295 (1991).Google Scholar

  • R. Donat and A. Marquina, "Capturing shock reflections: an improved flux formula", J. Comp. Phys. 125 (1), 42-58 (1996).Google Scholar

  • S. Jin and Z.P. Xin, "The relaxation schemes for systems of conservation laws in arbitrary space dimensions", Comm. Pure Appl. Math. 48 (3), 235-276 (1995).Google Scholar

  • R.J. LeVeque, Finite-volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, 2002.Google Scholar

  • R.J. LeVeque and M. Pelanti, "A class of approximate Riemann solvers and their relation to relaxation schemes", J. Comput. Phys. 172 (2), 572-591 (2001).Google Scholar

  • V.P. Kolgan, "Application of the minimum-derivative principle in the construction of finite-diverence schemes for numerical analysis of discontinuous solutions in gas dynamics", Uch. Zap. TsaGI 3 (6), 68-77 (1972).Google Scholar

  • B. van Leer, "Towards the ultimate conservative difference scheme. V-A second-order sequel to Godunov's method", J. Comp. Phys. 32, 101-136 (1979).Google Scholar

  • P.L. Roe, "Sonic flux formulae", SIAM J. Sci. Stat. Comput. 13, 611-630 (1982).Google Scholar

  • A. Harten, "ENO schemes with subcell resolution", J. Comp. Phys. 83, 148-184 (1989).Google Scholar

  • P.R. Woodward and P. Colella, "The numerical simulation of two-dimensional fluid flow with strong shocks", J. Comp. Phys. 54, 115-173 (1984).Google Scholar

  • K. Murawski and M. Goossens, "Operator splitting for multidimensional magnetohydrodynamics", J. Geophys. Res. 99 (A6), 11569-11573 (1994).Google Scholar

  • G. Strang, "On the construction and comparison of difference schemes", SIAM J. Num. Anal. 5 (3), 506-517 (1968).Google Scholar

  • P. Colella, "Multidimensional upwind methods for hyperbolic conservation laws", J. Comp. Phys. 87, 171-200 (1990).Google Scholar

  • M.J. Berger and P. Colella, "Local adaptive mesh refinement for shock hydrodynamics", J. Comp. Phys. 82, 64-84 (1989).Google Scholar

  • J. Bell, M. Berger, J. Saltzman, and M. Welcome, "Three dimensional adaptive mesh refinement for hyperbolic conservation laws", SIAM J. Sci. Comput. 15 (1), 127-138 (1994).Google Scholar

  • D.F. Martin and P. Colella, "A cell-centered adaptive projection method for the incompressible Euler equations", J. Comp. Phys. 163 (2), 271-312 (2000).Google Scholar

  • D. DeZeeuw and K.G. Powell, "An adaptively refined Cartesian mesh solver for the Euler equations", J. Comp. Phys. 104, 56-68 (1993).Google Scholar

  • J.J. Quirk, "A cartesian grid approach with hierarchical refinement for compressible flows", Computers and Fluids 23 (1), 125-142 (1994).Google Scholar

  • J.-Y. Trepanier, M. Reggio, and D. Ait-Ali-Yahia, "An implicit flux- difference splitting method for solving the Euler equations on adaptive traingular grids", Int. J. Num. Meth. Heat Fluid Flow 3 (1), 63-77 (1993).Google Scholar

  • S. Arendt, "Vorticity in stratified fluids. I. General formulation", Geophys. Astrophys. Fluid Dynamics 68 (1), 59-83 (1993).Google Scholar

  • J.V. Hollweg, "On the origin of solar spicules", Astrophys. J. 257, 345-353 (1982).Google Scholar

About the article


Published Online: 2011-08-19

Published in Print: 2011-03-01


Citation Information: Bulletin of the Polish Academy of Sciences: Technical Sciences, Volume 59, Issue 1, Pages 81–91, ISSN (Print) 0239-7528, DOI: https://doi.org/10.2478/v10175-011-0012-3.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in