[1] A. Pikovsky, M. Rosenblum, and J. Kurths, *Synchronization: a**Universal Concept in Nonlinear Sciences, Cambridge Nonlinear**Science Series*, Cambridge University Press, Cambridge, 2001.

[2] P.J. Uhlhaas and W. Singer, “Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology”, *Neuron *52, 155-168 (2006). [Crossref] [PubMed]

[3] P.L. Nunez, R. Srinivasan, A.F. Westdorp, R.S. Wijesinghe, D.M. Tucker, R.B. Silberstein, and P.J. Cadusch, “EEG coherency I: statistics, reference electrode, volume conduction, laplacians, cortical imaging, and interpretation at multiple scales”, *Electroencephalography and Clinical Neurophysiology* 103, 499-515 (1997).

[4] R. Vigário, J. Särelä, V. Jousmäki, M. Hämäläinen, and E. Oja, “Independent component approach to the analysis of EEG and MEG recordings”, *IEEE Trans. on Biom. Eng. *47 (5), 589-593 (2000). [Crossref]

[5] A. Hyvärinen, J. Karhunen, and E. Oja, *Independent Component**Analysis*. John Wiley & Sons, London, 2001.

[6] A. Cichocki and S. Amari, *Adaptive Blind Signal and Image**Processing - Learning Algorithms and Applications*, John Wiley & Sons, London, 2002.

[7] P. Hoyer, “Non-negative matrix factorization with sparseness constraints”, *J. Machine Learning Research *5, 1457-1469 (2004).

[8] D. Lee and H. Seung, “Algorithms for non-negative matrix factorization”, *Advances in Neural Information Processing Systems* 13, 556-562 (2001).

[9] M. Almeida, J.-H. Schleimer, J. Bioucas-Dias, and R. Vigärio, “Source separation and clustering of phase-locked subspaces”, *IEEE Trans. on Neural Networks *22 (9), 1419-1434 (2011). [Web of Science] [Crossref]

[10] S. Boyd and L. Vandenberghe, *Convex Optimization*, Cambridge University Press, Cambridge, 2004.

[11] E. Alhoniemi, A. Honkela, K. Lagus, and J. Seppä, “Compact modeling of data using independent variable group analysis”, *IEEE Trans. on Neural Networks *18, 1762-1776 (2007). [Crossref]

[12] B. Póczos and A. Lörincz, “Independent subspace analysis using geodesic spanning trees”, *Proc. Int. Conf. on Machine**Learning (ICML) *1, CD-ROM (2005).

[13] J. Beirlant, E. Dudewicz, L. Gyorfi, and E. van der Meulen, “Nonparametric entropy estimation: an overview”, *Int. J. Mathematical**and Statistical Sciences *6, 17-39 (1997).

[14] H.W. Gutch, J. Krumsiek, and F.J. Theis, “An ISA algorithm with unknown group sizes identifies meaningful clusters in metabolomics data”, *Proc. Eur. Signal Processing Conf. (EUSIPCO)* 1, CD-ROM (2011).

[15] A. Hyvärinen and U. Köster, “FastISA: A fast fixed-point algorithm for independent subspace analysis”, *Proc. Eur. Symposium**on Artificial Neural Networks (ESANN) *1, CD-ROM (2006).

[16] A. Sharma and K.K. Paliwal, “Subspace independent component analysis using vector kurtosis”, *Pattern Recognition *39, 2227-2232 (2006). [Crossref]

[17] J.A. Palmer and S. Makeig, “Blind separation of dependent sources and subspaces by minimum mutual information”, in *Technical Report*, University of California, San Diego, 2010.

[18] Z. Szabó, B. Póczos, and A. Lorincz, “Undercomplete blind subspace deconvolution”, *J. Machine Learning Research *8, 1063-1095 (2007).

[19] F.J. Theis, “Towards a general independent subspace analysis”, *Advances in Neural Information Processing Systems (NIPS) *1, CD-ROM (2007).

[20] L.B. Almeida, “MISEP - linear and nonlinear ICA based on mutual information”, *J. Machine Learning Research *4, 1297- 1318 (2004).

[21] A. Ziehe and K.-R. Müller, “TDSEP - an efficient algorithm for blind separation using time structure”, *Int. Conf. on Artificial**Neural Networks *1, 675-680 (1998).

[22] R. Vigário, V. Jousmäki, M. Hämäläinen, R. Hari, and E. Oja, “Independent component analysis for identification of artifacts in magnetoencephalographic recordings”, *Advances in NIPS* 10, 229-235 (1997).

[23] A.V. Oppenheim, R.W. Schafer, and J.R. Buck, *Discrete-Time**Signal Processing*, Prentice-Hall International Editions, London, 1999.

[24] T. Eichele, S. Rachakonda, B. Brakedal, R. Eikeland, and V. D. Calhoun, “EEGIFT: Group independent component analysis for event-related EEG data”, *Computational Intelligence and**Neuroscience *2011, 1-9 (2011).

[25] M. Almeida, R. Vigário, and J. Bioucas-Dias, “Estimation of the common oscillation for phase locked matrix factorization”, *Proc. Int. Conf. on Pattern Recognition Applications and**Methods (ICPRAM) *1, CD-ROM (2012).

[26] P.L. Nunez and R. Srinivasan, *Electric Fields of the Brain: the**Neurophysics of EEG*, Oxford University Press, Oxford, 2006.

## Comments (0)