Jump to ContentJump to Main Navigation
Show Summary Details

Bulletin of the Polish Academy of Sciences Technical Sciences

The Journal of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR increased in 2015: 1.087
Rank 39 out of 85 in category Engineering, Multidisciplinary in the 2015 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2015: 0.526
Source Normalized Impact per Paper (SNIP) 2015: 1.208
Impact per Publication (IPP) 2015: 1.158

Open Access
Online
ISSN
2300-1917
See all formats and pricing
Volume 60, Issue 3 (Dec 2012)

Issues

A comparison of algorithms for separation of synchronous subspaces

M. Almeida
  • Corresponding author
  • Instituto de Telecomunicac¸ ˜oes, Instituto Superior T´ecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal / Department of Information and Computer Science, Aalto University, F1–00076 Aalto, Finland
  • Email:
/ J. Bioucas-Dias
  • Instituto de Telecomunicaç˜oes, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
/ R. Vigário
  • Instituto de Telecomunicaç˜oes, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
/ E. Oja
  • Department of Information and Computer Science, Aalto University, F1–00076 Aalto, Finland
Published Online: 2012-12-22 | DOI: https://doi.org/10.2478/v10175-012-0057-y

Abstract

Independent Subspace Analysis (ISA) consists in separating sets (subspaces) of dependent sources, with different sets being independent of each other. While a few algorithms have been proposed to solve this problem, they are all completely general in the sense that they do not make any assumptions on the intra-subspace dependency. In this paper, we address the ISA problem in the specific context of Separation of Synchronous Sources (SSS), i.e., we aim to solve the ISA problem when the intra-subspace dependency is known to be perfect phase synchrony between all sources in that subspace. We compare multiple algorithmic solutions for this problem, by analyzing their performance on an MEG-like dataset.

Keywords : phase-locking; synchrony; source separation; subspaces; Independent Component Analysis (ICA); Independent Subspace Analysis (ISA); magnetoencephalogram (MEG).

  • [1] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: aUniversal Concept in Nonlinear Sciences, Cambridge NonlinearScience Series, Cambridge University Press, Cambridge, 2001.

  • [2] P.J. Uhlhaas and W. Singer, “Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology”, Neuron 52, 155-168 (2006). [Crossref] [PubMed]

  • [3] P.L. Nunez, R. Srinivasan, A.F. Westdorp, R.S. Wijesinghe, D.M. Tucker, R.B. Silberstein, and P.J. Cadusch, “EEG coherency I: statistics, reference electrode, volume conduction, laplacians, cortical imaging, and interpretation at multiple scales”, Electroencephalography and Clinical Neurophysiology 103, 499-515 (1997).

  • [4] R. Vigário, J. Särelä, V. Jousmäki, M. Hämäläinen, and E. Oja, “Independent component approach to the analysis of EEG and MEG recordings”, IEEE Trans. on Biom. Eng. 47 (5), 589-593 (2000). [Crossref]

  • [5] A. Hyvärinen, J. Karhunen, and E. Oja, Independent ComponentAnalysis. John Wiley & Sons, London, 2001.

  • [6] A. Cichocki and S. Amari, Adaptive Blind Signal and ImageProcessing - Learning Algorithms and Applications, John Wiley & Sons, London, 2002.

  • [7] P. Hoyer, “Non-negative matrix factorization with sparseness constraints”, J. Machine Learning Research 5, 1457-1469 (2004).

  • [8] D. Lee and H. Seung, “Algorithms for non-negative matrix factorization”, Advances in Neural Information Processing Systems 13, 556-562 (2001).

  • [9] M. Almeida, J.-H. Schleimer, J. Bioucas-Dias, and R. Vigärio, “Source separation and clustering of phase-locked subspaces”, IEEE Trans. on Neural Networks 22 (9), 1419-1434 (2011). [Web of Science] [Crossref]

  • [10] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, 2004.

  • [11] E. Alhoniemi, A. Honkela, K. Lagus, and J. Seppä, “Compact modeling of data using independent variable group analysis”, IEEE Trans. on Neural Networks 18, 1762-1776 (2007). [Crossref]

  • [12] B. Póczos and A. Lörincz, “Independent subspace analysis using geodesic spanning trees”, Proc. Int. Conf. on MachineLearning (ICML) 1, CD-ROM (2005).

  • [13] J. Beirlant, E. Dudewicz, L. Gyorfi, and E. van der Meulen, “Nonparametric entropy estimation: an overview”, Int. J. Mathematicaland Statistical Sciences 6, 17-39 (1997).

  • [14] H.W. Gutch, J. Krumsiek, and F.J. Theis, “An ISA algorithm with unknown group sizes identifies meaningful clusters in metabolomics data”, Proc. Eur. Signal Processing Conf. (EUSIPCO) 1, CD-ROM (2011).

  • [15] A. Hyvärinen and U. Köster, “FastISA: A fast fixed-point algorithm for independent subspace analysis”, Proc. Eur. Symposiumon Artificial Neural Networks (ESANN) 1, CD-ROM (2006).

  • [16] A. Sharma and K.K. Paliwal, “Subspace independent component analysis using vector kurtosis”, Pattern Recognition 39, 2227-2232 (2006). [Crossref]

  • [17] J.A. Palmer and S. Makeig, “Blind separation of dependent sources and subspaces by minimum mutual information”, in Technical Report, University of California, San Diego, 2010.

  • [18] Z. Szabó, B. Póczos, and A. Lorincz, “Undercomplete blind subspace deconvolution”, J. Machine Learning Research 8, 1063-1095 (2007).

  • [19] F.J. Theis, “Towards a general independent subspace analysis”, Advances in Neural Information Processing Systems (NIPS) 1, CD-ROM (2007).

  • [20] L.B. Almeida, “MISEP - linear and nonlinear ICA based on mutual information”, J. Machine Learning Research 4, 1297- 1318 (2004).

  • [21] A. Ziehe and K.-R. Müller, “TDSEP - an efficient algorithm for blind separation using time structure”, Int. Conf. on ArtificialNeural Networks 1, 675-680 (1998).

  • [22] R. Vigário, V. Jousmäki, M. Hämäläinen, R. Hari, and E. Oja, “Independent component analysis for identification of artifacts in magnetoencephalographic recordings”, Advances in NIPS 10, 229-235 (1997).

  • [23] A.V. Oppenheim, R.W. Schafer, and J.R. Buck, Discrete-TimeSignal Processing, Prentice-Hall International Editions, London, 1999.

  • [24] T. Eichele, S. Rachakonda, B. Brakedal, R. Eikeland, and V. D. Calhoun, “EEGIFT: Group independent component analysis for event-related EEG data”, Computational Intelligence andNeuroscience 2011, 1-9 (2011).

  • [25] M. Almeida, R. Vigário, and J. Bioucas-Dias, “Estimation of the common oscillation for phase locked matrix factorization”, Proc. Int. Conf. on Pattern Recognition Applications andMethods (ICPRAM) 1, CD-ROM (2012).

  • [26] P.L. Nunez and R. Srinivasan, Electric Fields of the Brain: theNeurophysics of EEG, Oxford University Press, Oxford, 2006.

About the article

Published Online: 2012-12-22

Published in Print: 2012-12-01


Citation Information: Bulletin of the Polish Academy of Sciences: Technical Sciences, ISSN (Print) 0239-7528, DOI: https://doi.org/10.2478/v10175-012-0057-y. Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in