Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Bulletin of the Polish Academy of Sciences Technical Sciences

The Journal of Polish Academy of Sciences

6 Issues per year

IMPACT FACTOR 2016: 1.156
5-year IMPACT FACTOR: 1.238

CiteScore 2016: 1.50

SCImago Journal Rank (SJR) 2016: 0.457
Source Normalized Impact per Paper (SNIP) 2016: 1.239

Open Access
See all formats and pricing
More options …
Volume 60, Issue 4


Laser modification of the materials surface layer – a review paper

J. Kusinski / S. Kac / A. Kopia / A. Radziszewska / M. Rozmus-Górnikowska / B. Major
  • Institute of Metallurgy and Materials Sciences, Polish Academy of Sciences, 25 Reymonta St., 30-059 Cracow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ L. Major
  • Institute of Metallurgy and Materials Sciences, Polish Academy of Sciences, 25 Reymonta St., 30-059 Cracow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. Marczak
  • Institute of Optoelectronics, Military University of Technology, 2 Gen. S. Kaliskiego St., 00-908 Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. Lisiecki
  • Welding Department, Silesian University of Technology, 18A Konarskiego St., 44-100 Gliwice, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-02-14 | DOI: https://doi.org/10.2478/v10175-012-0083-9


The state of laser processing in surface materials modification in Poland is reported, based on own experience, coworkers and coauthors results, as well the literature review. The curriculum concerning historical development of lasers and laser technology in Poland, laser-matter interaction, as well basis of different laser techniques applied in materials surface engineering (solid state hardening, melting, alloying, cladding, ablation, shot peening, cleaning and texturing) are reviewed, and compared with results of coauthors, as well with a wide range of Polish authors papers. Finally, it is concluded that overall state of research on laser application in surface engineering in Poland is well developed and still growing industrial application is observed.

Keywords : lasers in Poland; laser surface heat treatment; laser melting; alloying; cladding; laser ablation; laser cleaning; laser shock processing; laser texturing; multilayer coatings

  • [1] T. H. Maiman, “Stimulated optical emission in ruby”, Nature 187, 493-494 (1960).Google Scholar

  • [2] B. Paszkowski, W. Wolinski, and M. Nowicki, “Some problems of laser beam welding and drilling”, Electron Technology 2 (1), 175-182 (1969).Google Scholar

  • [3] Z. Puzewicz and M. Slojewski, Laser Processing of FormedHoles, WAT, Warsaw, 1970, (in Polish).Google Scholar

  • [4] W. Wolinski and M. Nowicki, “Laser treatment of materials”, Trans. Institute of Electron Technology 10, 103-105 (1973).Google Scholar

  • [5] A. Sadowski and R. Krehlik, The Laser in Materials Processingand Metrology, WNT, Warsaw, 1973, (in Polish).Google Scholar

  • [6] M. Nowicki, Lasers in Electronic Technology and in MaterialsTreatment, WNT, Warsaw, 1978, [7] J. Zimny, “Influence of the laser beam radiation parameters on technological effects of photonic holes processing in selected materials”, PhD Thesis, Cracow University of Technology, Cracow, 1975, (in Polish).Google Scholar

  • [8] J. Zimny, “The properties of laser beam machining (LBM) of machining-resistant alloys steels, Habilitation Thesis, Trans.Google Scholar

  • Cracow University of Technology, Cracow, 1984, (in Polish).Google Scholar

  • [9] J. Kusinski, “Effect of the heating rate, time and temperature on the hypereutectoid tool steels homogeneity”, PhD Thesis, AGH-University of Sciences and Technology, Cracow, 1976, (in Polish).Google Scholar

  • [10] Z. Kwaczynski and R. Dzioch, “Tests of hardening steel by a continuous CO2 laser of 150 W power”, Metallography andHeat Treatment 41, 20-27 (1979), (in Polish).Google Scholar

  • [11] H. Andrzejewski and Z. Wieczynski, “Effect of basic technological parameters on the results of surface hardening by a laser beam”, Metallography and Heat Treatment 53-54, 24-28 (1981), (in Polish), [12] J. Kusinski, “Laser melting of T-1 high speed steel” MetallurgicalTransactions A, 19A (2), 377-382 (1988).Google Scholar

  • [13] T. Burakowski and T. Straus, “Development of laser techniques for technological needs”, Metallography, Heat Treatment,Surface Engineering 88, 3-7 (1987), (in Polish).Google Scholar

  • [14] S. Kocanda, M. Lech-Grega, and D. Natkaniec, “Residual stresses in laser hardened elements made from 1045 steel” (in Polish), Bull. Military Tech. Academy 12 (3), 143-163 (1989).Google Scholar

  • [15] A. Wolynski and W. Waligora, “Effect of laser treatment on abrasive wear of 1045 steel”, Tribologia 3, 61-63 (1991), (in Polish).Google Scholar

  • [16] F. Kostrubiec and M. Walczak, “Microhardness of the surface layer of tungsten and molybdenum after recrystallisation with the laser radiation”, J. Engineering Materials and Technology 113, 130-34 (1991).Google Scholar

  • [17] T. Burakowski, “Lasers and their application in surface engineering”, Mechanic 5-6, 197-204 (1992).Google Scholar

  • [18] W. Napadlek, W. Przetakiewicz, and A. Gorka, “Laser saturation of low carbon steel by cladding of chromium”, Proc. V-th Int. Symp. Institute of Mechanical Vehicles of the MilitaryAcademy, 229-235 (1993), (in Polish).Google Scholar

  • [19] M. Steen and K. Watkins, Laser Material Processing, vol. 1, Springer-Verlag, New York, 2003.Google Scholar

  • [20] J. Dutta Majumdar and I. Manna, ”Laser material processing”, Int. Materials Reviews 56 (5/6), 341-88 (2011).Google Scholar

  • [21] J. Kusinski, Laser Applications in Materials Engineering, WN “Akapit”, Cracow, 2000, (in Polish).Google Scholar

  • [22] J. Dowden, The Theory of Laser Materials Processing: Heatand Mass Transfer in Modern Technology, Kanopus Publishing Limited, Bristol, 2009.Google Scholar

  • [23] M.S. Brown and C.B. Arnold, “Interaction and application to multiscale surface modification”, in Laser Precision Microfabrication, ed. K. Sugioka, Springer-Verlag, Berlin, 2010.Google Scholar

  • [24] J.F. Ready, “Effects due to absorption of laser radiation”, AppliedPhysics 36 (2), 462-468 (1965).Google Scholar

  • [25] E. Rimini, Laser and Electron Beam Interactions with Solidsand Materials Processing, pp. 15-49, Elsevier, New York, 1982.Google Scholar

  • [26] B. S. Yilbas, A. Sahin, and R. Davies, “Laser heating mechanism including evaporation process initiating the laser drilling”, Int. J. Mach. Tools Mf. 35 (7), 1047-1062 (1995).Google Scholar

  • [27] R. Domanski, Laser Radiation-Interaction with a Solid Matter, WNT, Warszawa, 1990, (in Polish).Google Scholar

  • [28] R. Parkitny, J. Winczek, H. Jabreen, and S.M. Thiab, “Temperature fields in steel elements irradiated by pulsed and continuous laser beam”, Proc. II Nat. Conf. on Surface Treatment 1, 129-135 (1993), (in Polish).Google Scholar

  • [29] J. Marczak, K. Jach, and A. Sarzynski, “Numerical modeling of laser-matter interaction”, Proc. SPIE 5146, 215-225 (2003).Google Scholar

  • [30] W.M. Steen and C.H.G. Courtney, “Surface heat treatment of EN 8 steel using a 2 kW continuous-wave CO2 laser”, MetalsTechnol. 12, 456-462 (1979).Google Scholar

  • [31] M.F. Ashby and K.E. Easterling, “The transformation hardening of steel surfaces by laser beams - I. Hypo-eutectoid steels”, Acta Metall. 32 (A11), 1935-1948 (1984).Google Scholar

  • [32] W.-B. Li, K.E. Easterling, and M.F. Ashby, “Laser transformation hardening of steel - II. Hypereutectoid steels”, Acta. Metall. 34, 1533-1543 (1986).CrossrefGoogle Scholar

  • [33] H.E. Cline and T.R. Anthony, “Treating and melting material with a scanning laser or electron beam”, J. Appl. Phys. 48 (9), 3895-3900 (1997).Google Scholar

  • [34] T.R. Anthony and H.F. Cline, “Surface rippling induced by surface-tension gradients during laser surface melting and alloying”, J. Applied Physics 48, 3888-3894 (1977).CrossrefGoogle Scholar

  • [35] C. Chan, J. Mazumder, and M.M.Chen, “A two-dimensional transient model for convection in laser melted pool”, MetallurgicalTransactions 15A, 2175-2184 (1984).Google Scholar

  • [36] D. Sowdari and P. Majumdar, “Finite element analysis of laser irradiated metal heating and melting processes”, Optics& Laser Technology 42 (6), 855-865 (2010).Google Scholar

  • [37] J. Kusinski and G. Thomas, “Effect of laser hardening on microstructure and wear resistance in medium carbon/chromium steels”, Proc. Conf. on: Laser Processing, Fundamentals, Appl.and Systems Eng. 668, 150-157 (1986).Google Scholar

  • [38] J. Kusinski, M. Goly, and G. Kusinski, “Laser heat treatment of 30CrMnMo16-8 steel”, Materials Engineering 5, 1053-1056 (2006), (in Polish).Google Scholar

  • [39] A. Bylica and S. Adamiak, “Laser bean hardening of carbon steels”, Archives of Foundry 2 (6), 43-53 (2002).Google Scholar

  • [40] P.A. Molian and R. Baldwin, “Wear behavior of laser surface hardened gray and ductile cast irons, Part 1 - sliding wear”, J. Tribology 108, 326-333 (1986).Google Scholar

  • [41] J.L. Chen, Y.H. Geran, H.G. Wans, and J.T. Zhang, “A study on austenite transformation during laser heating“, J. MaterialsProcessing Technology 63 (1-3), 546-549 (1997).Google Scholar

  • [42] I.R. Sare and R.W.K. Honeycombe, “Splat cooling of ironmolybdenum- carbon alloys”, J. Mater. Sci. 13, 1991-2002 (1978).CrossrefGoogle Scholar

  • [43] J. Straus and L. Szylar, “Problems of laser heat treatment of tool steels on the base of HS 6-5-2 steel”, Metallography,Heat Treatment, Surface Engineering 85 (1-2), 23-38 (1987), (in Polish).Google Scholar

  • [44] I. Singh, “Review on: laser-beam and photon-assisted processed materials and their microstructures”, J. Mater. Sci. 29, 5232-5258 (1994).CrossrefGoogle Scholar

  • [45] J. Kusinski, “Microstructure, chemical composition and properties of the surface layer of m2 steel after laser melting under different conditions”, Appl. Surf. Sci. 36, 317-322 (1995).Google Scholar

  • [46] A. Bylica and A, Dziedzic, “Optimization of the laser and conventional heat treatment parameters on the structure and properties of SW7M high speed tool steel”, Solidification ofMetals and Alloys 36, 223-231 (1998), (in Polish).Google Scholar

  • [47] A. Bylica and A. Dziedzic, “Influence of the laser and conventional heat treatment parameters on the structure and properties of SW7M high speed tool steel”, Solidification of Metalsand Alloys 42, 275-283 (2000), (in Polish).Google Scholar

  • [48] S. Kac and J. Kusinski, “SEM structure and properties of ASP2060 steel after laser melting”, Surface and CoatingsTechnology 180-181, 611-615 (2004).Google Scholar

  • [49] J. Jaglarz and A. Grabowski, “Optical investigations of Al- Si/SiC composites subjected to laser CO2 annealing”, Opticsand Lasers in Engineering 48, 1038-1044 (2010).Google Scholar

  • [50] J. Kusinski, S. Kac, and G. Kusinski, “Microstructure and properties of laser remelted iron base amorphous coatings”, Materials Engineering 6, 492-497 (2009).Google Scholar

  • [51] F.E. Cunningham, “The use of lasers for the production of surface alloys”, M.S. Thesis, MIT, London, 1964.Google Scholar

  • [52] C.W. Draper, “Laser surface alloying: the state of the art”, J. Metals 34, 16-25 (1982).Google Scholar

  • [53] I. Smurov and M. Ignatiev, “Innovative intermetallic compounds by laser alloying”, in Laser Processing : SurfaceTreatment and Film Deposition, eds. J. Mazumder, O. Conde, R. Villar, and W. Steen, Kluwer Academic Publishers, London, 1996.Google Scholar

  • [54] F. Kostrubiec, “Distribution of concentration of gold in the process of laser alloying of the nickel surface layer”, J. MaterialsScience 26, 6044-6048 (1991).Google Scholar

  • [55] T. Didenko, “Laser surface melting - modelling and experimental verification of the melted zone shape and size, and chemical homogeneity”, PhD Thesis, AGH University of Science and Technology, Kraków, 2006, (in Polish).Google Scholar

  • [56] T. Didenko, J. Kusinski, and G. Kusinski, “Multiphase model of heat and mass transport during laser alloying of iron with electrodeposited chromium layer”, Proc. Multiscale andFunctionally Graded Materials Conf. 1, 640-646 (2006).Google Scholar

  • [57] T. Didenko, A. Siwek, and J. Kusinski, “Numerical modelling of the laser alloying process”, Proc. XI Conf.: Informatics inMetals Technology 1, 179-186 (2004).Google Scholar

  • [58] A. Woldan, J. Kusinski, and E. Tasak, “The microstructure of plain carbon steel laser-alloyed with silicon carbide”, MaterialsChemistry and Physics 81, 507-509 (2003).Google Scholar

  • [59] S. Kac, A. Radziszewska, and J. Kusinski, “Structure and properties of the bronze laser alloyed with titanium”, AppliedSurface Science 253, 7895-7898 (2007).Google Scholar

  • [60] L.A. Dobrzanski, M. Bonek, E. Hajduczek, and A. Klimpel, “Alloying the X40CrMoV5-1 steel surface layer with tungsten carbide by the use of a high power diode laser”, AppliedSurface Science 247, 328-332 (2005).Google Scholar

  • [61] L.A. Dobrzanski, E. Jonda, and K. Labisz, “The influence of laser modification on the structure and properties of the X40CrMoV5-1 and 32CrMoV12-28 hot work tool steels”, Archives of Materials Sciences and Engineering 41 (2), 104-111 (2010).Google Scholar

  • [62] Lisiecki and A. Klimpel, “Diode laser gas nitriding of Ti6Al4V alloy”, Archives of Materials Science and Engineering 31, 53-56 (2008).Google Scholar

  • [63] J. Sieniawski, R. Filip, G. Mrowka, and E. Pleszakow, “Effect of laser treatment on microstructure of Ti-6Al-4V titanium alloys”, Proc. X-th Conf. on Achievements in Mechanical andMaterials Engineering 1, 523-526 (2001), (in Polish).Google Scholar

  • [64] R. Filip, “Laser nitriding of the surface layer of Ti6Al4V titanium alloys”, Archives of Materials Science and Engineering 30 (1), 25-28 (2008).Google Scholar

  • [65] M. Kulka and A. Pertek, “Microstructure and properties of borocarburized 15CrNi6 steel after laser surface modification”, Applied Surface Science 236, 98-105 (2004).Google Scholar

  • [66] M. Kulka and A. Pertek, “Gradient formation of boride layers by borocarburizing”, Applied Surface Science 254, 5281-5290 (2008).Google Scholar

  • [67] M. Kulka, N. Makuch, A. Pertek, and A. Piasecki, “Microstructure and properties of borocarburized and lasermodified 17CrNi6-6 steel”, Optics & Laser Technology 44, 872-881 (2012).Google Scholar

  • [68] M. Paczkowska W. Ratuszek, and W. Waligora, “Microstructure of laser boronized nodular iron”, Surface & CoatingsTechnology 205, 2542-2545 (2010).Google Scholar

  • [69] T. Burakowski and T. Wierzchon, Surface Engineering ofMetals- Principles, Equipment, Technologies, CRC Press, New York, 1999.Google Scholar

  • [70] H.J. Scussel, ASM Handbook on Friction, Lubrication, andWear Technology, ASM International, Materials Park, 1992.Google Scholar

  • [71] Z. Beidi, Z. Xiaoyan, T. Zengyi, Y. Shuguo, and C. Kun, “Coarse cemented WC particle ceramic-metal composite coatings produced by laser cladding”, Wear 170 (2), 161-166 (1993).Google Scholar

  • [72] M. Picasso, C.F. Marsden, J.D. Wagniere, A. Frenk, and M. Rappaz, “A simple but realistic model for laser cladding”, Metallurgical and Materials Transactions B 5B, 281-287 (1994).Google Scholar

  • [73] J. Choi and J. Mazumder, “Non-equilibrium synthesis of Fe- Cr-C-W alloy by laser cladding”, J. Materials Science 29 (17), 4460-4472 (1994).Google Scholar

  • [74] A. Belmondo and M. Castagna, Wear-Resistant Coatings byLaser Processing, Source-Book on Applications of the Laser Metal Working, ASM, London, 1981.Google Scholar

  • [75] J. Przybyłowicz, “Structure and exploative properties laser cladded cobalt alloys coatings”, PhD Thesis, AGH-University of Science and Technology, Kraków, 1999, (in Polish).Google Scholar

  • [76] A. Frenk and W. Kurz, “High speed laser cladding: Solidification conditions and microstructure of a cobalt-based alloy”, Mater. Sci. Eng. A 173, 339-342 (1993).Google Scholar

  • [77] J. Singh, “Laser surface cladding of Nickel-based alloys”, J. Metals 39, A85-A90 (1987).Google Scholar

  • [78] I. Smurov, “Laser cladding and laser assisted direct manufacturing”, Surf. Coat. Technol. 202, 4496-4502 (2008).Google Scholar

  • [79] J. Przybylowicz and J. Kusinski, “Laser cladding and erosive wear of Co-Mo-Cr-Si coatings”, Surface and CoatingsTechnology 125, 13-18 (2000).Google Scholar

  • [80] J. Przybylowicz and J. Kusinski, “Structure of laser cladded tungsten carbide composite coatings”, J. Materials ProcessingTechnology 109, 154-160 (2001).Google Scholar

  • [81] R. Jendrzejewski, A. Conde, J. de Damborenea, and G. Sliwinski, “Characterisation of the laser-clad stellite layers for protective coatings”, Materials and Design 23, 83-88 (2002).Google Scholar

  • [82] R. Jendrzejewski, G. Sliwinski, and A. Conde, “Laser cladding of Ni- and Co-based coatings for turbine industry applications”, Laser Technol. VII: Appl. Lasers 5229, 233-238 (2003).Google Scholar

  • [83] R. Jendrzejewski, I. Kreja, and G. Sliwinski, “Temperature distribution in laser-clad multi-layers”, Materials Science andEngineering A 379, 313-320 (2004).Google Scholar

  • [84] R. Jedrzejewski and G. S Sliwinski, “Investigation of temperature and stress fields in laser cladded coatings”, AppliedSurface Science 254, 21-925 (2007).Google Scholar

  • [85] A. Lisiecki and A. Klimpel, “Laser cladding of titanium alloy Ti6Al4V”, Archives of Manufacturing Engineering andAutomation 30 (1), 59-66 (2010).Google Scholar

  • [86] J. Singh, “Review: laser-beam and photon-assisted processed materials and their microstructures”, J. Materials Science 29, 5232-5258 (1994).Google Scholar

  • [87] B. Major, Ablation and Deposition with a Pulsed Laser, Akapit, Cracow, 2002, (in Polish).Google Scholar

  • [88] J. M. Lackner, Industrially-scaled Hybrid Pulsed Laser Depositionat Room Temperature, Orecop SC., Cracow, 2005.Google Scholar

  • [89] D.B. Chrisey and G.K. Hubler, Pulsed Laser Deposition ofThin Films, John Wiley & Sons, New York, 1994.Google Scholar

  • [90] C. Belouet, “Thin film growth by the pulsed laser assisted deposition technique”, Appl. Surf. Sci. 96-98, 630-642 (1996).Google Scholar

  • [91] H.U. Krebs, S. F¨uhler, and O. Bremert, “Laser deposition of metallic alloys and multilayers”, Applied Surface Science 86, 86-89 (1995).Google Scholar

  • [92] J.M. Lackner, W. Waldhauser, A. Alamanou, Chr. Teichert, F. Schmied, L. Major, and B. Major, “Mechanisms for selfassembling topography formation in low-temperature vacuum deposition of inorganic coatings on polymer surfaces”, Bull. Pol. Ac:. Tech. 58, 281-294 (2010).Google Scholar

  • [93] J. Sarna, R. Kustosz, R. Major, J.M. Lackner, and B. Major, “Polish Artificial Heart - material, technology, diagnostics”, Bull. Pol. Ac:. Tech. 58, 329-336 (2010).Google Scholar

  • [94] A.A. Voevodin, S.J.P. Laube, S.D. Walck, J.S. Solomon, M.S. Donely, and J.S. Zabinski, “Combined of magnetron sputtering and pulsed laser deposition of carbides and diamond-like films”, J. Applied Physics 78, 4123 (1995).CrossrefGoogle Scholar

  • [95] M. Chmielowska, S. Villain, A. Kopia, J.P. Dallas, J. Kusinski, J.R. Gavarri, and Ch. Leroux, “Ce1−xNdxO2−_/Si thin films obtained by pulsed laser deposition: microstructure and conduction properties”, Thin Solid Films 516, 3747-3754 (2008).Google Scholar

  • [96] A. Kopia, “Microstructure investigation in thin films WO3 produced by pulsed laser deposition”, Solid State Phenomena 186, 164-167 (2012).Google Scholar

  • [97] A. Radziszewska, “Structural and chemical composition studies of pulsed laser deposited {_-Al-Mg} thin films”, J. Microscop. 237, 348-352 (2010).Google Scholar

  • [98] A. Radziszewska, “Structure and morphology of thin films deposited by pulsed laser technique”, Solid State Phenomena 186, 160-163 (2012).Google Scholar

  • [99] S. Kac and M. Kac, “Structure and properties of Al-Cu-Fe thin films deposited by PLD technique”, Materials Engineering 3, 368-371 (2010).Google Scholar

  • [100] L. Major, J. M. Lackner, and B. Major, “Multiscaled analysis of wear mechanism of titanium and carbon basis multilayer coatings”, Materials Engineering 1, 1-2 (2009).Google Scholar

  • [101] L. Major, “TEM Investigations of damage caused by indentation of multilayer TIVN/Ti/A-C-H coatings”, Solid StatePhenomena 186, 188-191 (2012).Google Scholar

  • [102] W. Mroz, A. Prokopiuk, M. Mularczyk-Oliwa, M. Jelinek, B. Major, W. Przetakiewicz, Z. Bojar, S. Jozwiak, D. Zasada, and K. Kasuya, “Nickel- and iron-based intermetallics deposited using KrF laser”, Applied Surface Science 197-198, 371-375 (2002).Google Scholar

  • [103] M.S. Brown and C.B. Arnold, “Fundamentals of lasermaterial interaction and application to multiscale surface modification”, Laser Precision Microfabrication, Series inMaterials Science 135, CD-ROM (2010).Google Scholar

  • [104] J. Marczak, “Restoration of art works with using laser radiation”, Mechanical Review 15-16, 37-40 (1997), (in Polish).Google Scholar

  • [105] J. Marczak, “Analysis and removal of encrustations from a variety of materials using a laser ablation technique”, HabilitationThesis, BEL-Studio, Warsaw, 2004, (in Polish).Google Scholar

  • [106] J. Marczak and A. Kos, “Physics in modern investigations and conservation of works of art”, Conservation News 26, 65-76 (2009).Google Scholar

  • [107] J. Marczak, “Surface cleaning of art work by UV, VIS and IR pulse laser radiation”, Proc. SPIE, Laser Techniques andSystems in Art Conservations 4402, 202-209 (2001).Google Scholar

  • [108] J. Marczak, K. Jach, and R. Swierczynski, “Numerical modeling of laser-matter interaction in the region of “low” laser parameters”, Applied Physics A 3, 725-731 (2010).Google Scholar

  • [109] T. Burakowski, J. Marczak, and W. Napadlek, “The point for cleaning of materials using laser ablation”, Institute of ElectronicsWorks 228, 125-134 (2006), (in Polish).Google Scholar

  • [110] A.C. Tam, W.P. Leung, W. Zapka, and W. Ziemlich, “Laser cleaning techniques for removal of surface particulates”, J. Appl. Phys. 71 (7), 3515-3523 (1992).CrossrefGoogle Scholar

  • [111] J. Marczak, A. Koss, P. Targowski, M. Gora, M. Strzelec, A. Sarzynski, W. Skrzeczanowski, R. Ostrowski, and A. Rycyk, “Characterization of laser cleaning of artworks”, Sensors 8, 6507-6548 (2008).Google Scholar

  • [112] R. Major, K. Maksymow, J. Marczak, J.M. Lackner, M. Kot, and B. Major, “Migration channels produced by laser ablation for substrate endotelialization”, Bull. Pol. Ac.: Tech. 60, 337-342 (2012).Google Scholar

  • [113] C. Tam, H.K. Park and C.P. Grigoropoulos, “Laser cleaning of surface contaminants”, Applied Surface Science 127-129, 721-725 (1998).Google Scholar

  • [114] D. B¨auerle, Laser Processing and Chemistry, Springer, Berlin, 2000.Google Scholar

  • [115] A. Kaminska, M. Sawczak, K. Komar, and G. Sliwinski, “Application of the laser ablation for conservation of historical paper documentas”, Applied Surface Science 253 (19), 7860-7864 (2007).Google Scholar

  • [116] A.A. Bugayev, M.C. Gupta, and R. Payne, “Laser processing of Inconel 600 and surface structure”, Optics and Lasers inEngineering 44, 102-111 (2006).Google Scholar

  • [117] J. Marczak, “Surface cleaning of art works by UV, VIS and pulsed laser radiation”, Proc. SPIE, Laser Techniques andSystems in Art Conservations 4402, 202-209 (2001).Google Scholar

  • [118] J. Marczak, W. Napadlek, and A. Sarzynski, “Modification of aluminum surface layer properties by detonation wave generated by laser beam”, Materials Engineering 5 (147), 622-624 (2005), (in Polish).Google Scholar

  • [119] C. Ye and G.J. Cheng, “Warm laser shock peening driven nanostructures and their effects on fatigue performance in aluminum alloy 6160”, Advanced Engineering Materials 12 (4), 291-297 (2010).Google Scholar

  • [120] Y.K. Zhang, J.Z. Lu, X.D. Ren, H.B. Yao, and H.X.Yao, “Effect of laser shock processing on the mechanical properties and fatigue lives of the turbojet engine blades manufactured by LY2 aluminum alloy”, Materials and Design 30 (5), 1697-1703 (2009).Google Scholar

  • [121] M.S. Schneider, B. Kad, D.H. Kalantar, B.A. Remington, E. Kenik, H. Jarmakani, and M.A. Meyers, “Laser shock compression of copper and copper-aluminum alloys”, Int. J. ImpactEngineering 32, 473-507 (2005).Google Scholar

  • [122] M. Rozmus-Gornikowska, J. Kusinski, and M. Blicharski, “Laser shock processing of an austenitic stainless steel”, Archives of Metallurgy 55 (3), 635-639 (2010).Google Scholar

  • [123] Q. Liu, C.H. Yang, K. Ding, S.A. Barter, and L. Ye, “The effect of laser power density on the fatigue life of laser-shockpeened 7050 aluminium alloys”, Fatique and Fracture of EngineeringMaterial and Structures 30, 1110-1124 (2007).Google Scholar

  • [124] M. Rozmus-Gornikowska, “Surface modifications of a Ti6Al4V Alloys by a laser shock processing”, Acta PhysicaPolonica A 117 (5), 808-811 (2010).Google Scholar

  • [125] P. Peyre, C. Carboni, P. Forget, and G. Beranger, “Influence of thermal and mechanical surface modifications induced by laser peening on the initiation of corrosion pits in 316L stainless steel”, J. Material Science 42 (16), 6866-6877 (2007).Google Scholar

  • [126] M. Rozmus-Gornikowska, J. Kusinski, and M. Blicharski, “The influence of the laser treatment on microstructure of the surface layer of an (X5CrNi18-10) austenitic stainless steel”, Archives of Metallurgy 56 (3), 717-721 (2011).Google Scholar

  • [127] L. Major, A. Rycyk, J. Kusinski, and J. Marczak, “Formation of intermetallic layers by means of pulsed laser radiation”, Materials Engineering 32 (4), 549-552 (2011).Google Scholar

  • [128] T. Burakowski, W. Napadłek, and A. Wozniak, “Ablative laser texturing of the crankshaft pin of internal combustion engine”, J. Machine Engineering 16 (4), 92-100 (2011), (in Polish).Google Scholar

  • [129] T. Burakowski, W. Napadłek, A. Wozniak, and I. Kalman, “Experimental determination of the effect of density of power laser _ = 1064 nm on the effectiveness of laser steel one pulse texturing 41Cr4”, Proc. Electrotechnical Institute 256, 7-21 (2012), (in Polish).Google Scholar

  • [130] L. A. Dobrzanski and A. Drygala, “Surface texturing of multicrystalline silicon solar cells”, J. Achievements in Materialsand Manufacturing Engineering 31 (1), 77-82 (2008).Google Scholar

  • [131] B. Antoszewski, “Formation of sliding surface with texture by laser micromachining”, Electrical Review 87 (7), 6-8 (2011).Google Scholar

  • [132] D. Du, Y.F. He, B. Sui, L.J. Xiong, and H. Zhang, “Laser texturing of rollers by pulsed Nd:YAG laser”, J. MaterialsProcessing Technology 161, 456-461 (2005). Google Scholar

About the article

Published Online: 2013-02-14

Published in Print: 2012-12-01

Citation Information: Bulletin of the Polish Academy of Sciences: Technical Sciences, Volume 60, Issue 4, Pages 711–728, ISSN (Print) 0239-7528, DOI: https://doi.org/10.2478/v10175-012-0083-9.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Alaa Alasadi, F. Claeyssens, and D. A. Allwood
AIP Advances, 2018, Volume 8, Number 5, Page 056322
Hassan Abdulhadi, Syarifah Ahmad, Izwan Ismail, Mahadzir Ishak, and Ghusoon Mohammed
Metals, 2017, Volume 7, Number 11, Page 475
Ludmila B. Boinovich, Evgeny B. Modin, Adeliya R. Sayfutdinova, Kirill A. Emelyanenko, Alexander L. Vasiliev, and Alexandre M. Emelyanenko
ACS Nano, 2017
Eva Tillova, Maria Chalupova, Lenka Kucharikova, Denisa Zavodska, and Juraj Belan
Materials Today: Proceedings, 2017, Volume 4, Number 5, Page 5973
S.R. Al-Sayed, A.A. Hussein, A.A. Nofal, S.I. Hassab Elnaby, and H. Elgazzar
Materials, 2017, Volume 10, Number 6, Page 595
D O Mul, E A Drobyaz, T A Zimoglyadova, V A Bataev, D V Lazurenko, and L I Shevtsova
IOP Conference Series: Materials Science and Engineering, 2016, Volume 124, Page 012130
Ludmila B. Boinovich, Alexandre M. Emelyanenko, Alexander D. Modestov, Alexandr G. Domantovsky, and Kirill A. Emelyanenko
ACS Applied Materials & Interfaces, 2015, Volume 7, Number 34, Page 19500

Comments (0)

Please log in or register to comment.
Log in