[1] M. Busłowicz, “Robust stability of positive discrete-time linear systems of fractional order”, *Bull. Pol. Ac.: Tech. *58 (4), 567-572 (2010). [Web of Science]

[2] I. Podlubny, *Fractional Differential Systems*, Academic Press, San Diego, 1999.

[3] D. Sierociuk and D. Dzieliński, “Fractional Kalman filter algorithm for the states parameters and order of fractional system estimation”, *Int. J. Appl. Math. Comp. Sci. *16 (1), 129-140 (2006).

[4] T. Abdeljawad, “On Riemann and Caputo fractional differences”, *Comp. and Math. with Appl. *13 (3), 1602-1611 (2011). [Crossref] [Web of Science]

[5] F.M. Atici and P.W. Eloe, “Initial value problems in discrete fractional calculus”, *Proc. American Mathematical Society *S 0002-9939(08)09626, 3-9 (2009).

[6] T. Kaczorek, *Selected Problems of Fractional Systems Theory*, Bialystok University of Technology, Białystok, 2009, (in Polish).

[7] S.G. Samko, A.A. Kilbas, and O.I. Marichev, *Fractional Integrals**and Derivatives: Theory and Applications*, Gordon and Breach Science Publishers S.A., Yverdon, 1993.

[8] M. Busłowicz, “Stability analysis of continuous-time linear systems consisting of n subsystems with different fractional orders”, *Bull. Pol. Ac.: Tech. *60 (2), 279-284 (2012). [Web of Science]

[9] F. Chen, X. Luo, and Y. Zhou, “Existence results for nonlinear fractional difference equation”, *Advances in Difference Eq. *ID 713201, 1-12 (2011).

[10] G.A. Anastassiou, *Intelligent Mathematics: Computational**Analysis*, Springer, Berlin, 2011.

[11] T. Kaczorek, “Fractional positive linear systems”, *Kybernetes* 38 (7/8), 1059-1078 (2009). [Web of Science] [Crossref]

[12] T. Kaczorek, “Reachability of cone fractional continuous-time linear systems”, *Int. J. Appl. Math. Comput. Sci. *19 (1), 89-93 (2009). [Web of Science]

[13] A. Ruszewski and N. Nartowicz, “Stabilization of inertial plant with time delay using fractional order controller”, *Acta Mechanica**et Automatica *5 (2), 117-121 (2011).

[14] J. Klamka, “Controllability of nonlinear discrete systems”, *Int. J. Appl. Math. Comput. Sci. *12 (2), 173-180 (2002).

[15] J. Klamka, “Local controllability of fractional discrete-time semilinear systems”, *Acta Mechanica et Automatica *5 (2), 55-58 (2011).

[16] I.M. Graves. “Some mapping theorems”, *Duke Math. J. *17 (2), 111-114 (1950).

[17] S. Walczak, “A note on the controllability of nonlinear systems”, *Math. Systems Theory *17, 351-356 (1984).

[18] M.T. Holm, *The Theory of Discrete Fractional Calculus: Development**and Application*, University of Nebraska, Lincoln, 2011.

[19] D. Mozyrska and E. Girejko, “Overview of the fractional h-difference operators”, in *Advances in Harmonic Analysis**and Operator Theory - the Stefan Samko Anniversary Volume. Operator Theory: Advances and Applications*, vol. 229, Birkh¨auser, Basel, 2013.

[20] M. Bettayeb and S. Djennoune, “A note on the controllability and the obseravbility of fractional dyanmical systems”, in *Proc. 2nd IFAC Workshop on Fractional Differentiation and**its Application *1, 19-21 (2006).

[21] T. Kaczorek, “Reachability and controllability to zero of positive fractional discrete-time systems”, *Machine Intelligence and**Robotic Control *6 (4), 139-143 (2007). [Web of Science]

## Comments (0)