Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Bulletin of the Polish Academy of Sciences Technical Sciences

The Journal of Polish Academy of Sciences

6 Issues per year

IMPACT FACTOR 2016: 1.156
5-year IMPACT FACTOR: 1.238

CiteScore 2016: 1.50

SCImago Journal Rank (SJR) 2016: 0.457
Source Normalized Impact per Paper (SNIP) 2016: 1.239

Open Access
See all formats and pricing
More options …
Volume 61, Issue 2


Simple speed sensorless DTC-SVM scheme for induction motor drives

H. Abu-Rub / D. Stando / M.P. Kazmierkowski
  • Institute of Control and Industrial Electronics, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-08-08 | DOI: https://doi.org/10.2478/bpasts-2013-0028


The paper focuses on the development of a novel DSP based high performance speed sensorless control scheme for PWM voltage source inverter fed induction motor drives. Firstly, two generic torque and flux control methods the Field Oriented Control (FOC) and Direct Torque Control (DTC), are briefly described. For implementation the sensorless scheme DTC with Space Vector Modulation (DTCSVM) has been selected because it eliminates the disadvantages associated with the DTC while keeping the advantages of both FOC and DTC. Secondly, the simple flux vector observer allowing speed sensor elimination is given. The novelty of the presented system lays in combining the DTC-SVM structure with a simple observer for both torque/flux and speed sensorless control. Furthermore, the DTC-SVM structure which operates in speed sensorless and torque control mode is presented. Finally, the description of a 50 kW laboratory drive and experimental results illustrating properties of the system are given.

Keywords : speed sensorless control; pulse width modulated (PWM) voltage source inverters; induction motor drives; direct torque control (DTC); DTC-SVM; adjustable speed drives (ASD)

  • [1] I. Boldea and S.A. Nasar, Electric Drives, CRC Press, Boca Raton, 2006.Google Scholar

  • [2] B.K. Bose, “Power electronics and motor drives recent progress and perspective”, IEEE Trans. on Ind. Electronics 56 (2), 581-588 (2009).CrossrefWeb of ScienceGoogle Scholar

  • [3] P. Vas, Sensorless Vector and Direct Torque Control, Clarendon Press, Oxford, 1998.Google Scholar

  • [4] M. Cirrincione, M. Pucci, and G. Vitale, Power Convertersand AC Electrical Drives with Linear Neural Networks, CRC Press, Boca Raton, 2012.Google Scholar

  • [5] M.P. Kazmierkowski and H. Tunia, Automatic Control of ConverterFed Drives, Elsevier, Amsterdam, 1994.Google Scholar

  • [6] L. Xu and M. Fu “A sensorless direct torque control technique for permanent magnet synchronous motors”, IEEE IndustrialApplications Conf. 1, 159-164 (1999).Google Scholar

  • [7] M.P. Kazmierkowski, L.G. Franquelo, J. Rodriguez, M. Perez, and J.I. Leon, “High-performance motor drives”, IEEE IndustrialElectronics Magazine 5 (4), 6-26 (2011).Web of ScienceGoogle Scholar

  • [8] K. Hasse, “Drehzahlgelverfahren fur schnelle Umkehrantriebe mit stromrichtergespeisten Asynchron - Kurzchlusslaufermotoren”, Reglungstechnik 20, 60-66 (1972).Google Scholar

  • [9] F. Blaschke, “The principle of field-orientation as applied to the transvector closed-loop control system for rotating-field machines”, Siemens Review 34, 217-220 (1972).Google Scholar

  • [10] I. Takahashi and T. Noguchi, “A new quick-response and high efficiency control strategy of an induction machine”, IEEETrans. on Industrial Application IA-22 (5), 820-827 (1986).Google Scholar

  • [11] G.S. Buja and M.P. Kazmierkowski, “Direct torque control of PWM inverter-fed AC motors - a survey”, IEEE Trans. on Ind. Electronics 51 (4), 744-757 (2004).CrossrefGoogle Scholar

  • [12] J. Holtz, “Sensorless control of induction machines-with or without signal injection?”, IEEE Trans. on Ind. Electron. 53 (1), 7-30 (2006).Google Scholar

  • [13] D. Casadei, F. Profumo, G. Serra, and A. Tani, “FOC and DTC: two viable schemes for induction motors torque control”, IEEETrans. on Power Electronics 17 (5), 779-787 (2002).CrossrefGoogle Scholar

  • [14] M. P. Kazmierkowski, R. Krishnan, and F. Blaabjerg, Controlin Power Electronics, Academic Press, London, 2002.Google Scholar

  • [15] T. Orłowska-Kowalska, “Application of extended Luenberger observer for flux and rotor time-constant estimation in induction motor drives”, IEE Proceedings 136 (6), 324-330 (1989).Google Scholar

  • [16] R. Nilsen and M.P. Kazmierkowski, “Reduced order observer with parameter adaption for fast rotor flux estimation in induction machines”, IEE Proc. D 136 (1), 35-43 (1989).Google Scholar

  • [17] T. Orłowska-Kowalska and M. Dybkowski, “Performance analysis of the sensorless adaptive sliding-mode neuro-fuzzy control of the induction motor drive with MRAS-type speed estimator”, Bull. Pol. Ac.: Tech. 60 (1), 61-70 (2012).Web of ScienceGoogle Scholar

  • [18] J. Guzinski and H. Abu-Rub, “Speed sensorless induction motor drive with predictive current controller”, IEEE Trans. onIndustrial Electronics 60 (2), 699-709 (2013).Web of ScienceGoogle Scholar

  • [19] H. Abu-Rub, and J. Guzinski, “Simple observer for induction motor speed sensorless control”, Proc. 37th Annual Conf. IEEE Industrial Electronics Society, IECON 2011 1, 2024-2029 (2011).Google Scholar

  • [20] dSPACE, RTLib Reference, September 2001.Google Scholar

  • [21] dSPACE, RTI Reference, September 2001.Google Scholar

About the article

Published Online: 2013-08-08

Published in Print: 2013-06-01

Citation Information: Bulletin of the Polish Academy of Sciences: Technical Sciences, Volume 61, Issue 2, Pages 301–307, ISSN (Print) 0239-7528, DOI: https://doi.org/10.2478/bpasts-2013-0028.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in