Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Bulletin of the Polish Academy of Sciences Technical Sciences

The Journal of Polish Academy of Sciences

6 Issues per year


IMPACT FACTOR 2016: 1.156
5-year IMPACT FACTOR: 1.238

CiteScore 2016: 1.50

SCImago Journal Rank (SJR) 2016: 0.457
Source Normalized Impact per Paper (SNIP) 2016: 1.239

Open Access
Online
ISSN
2300-1917
See all formats and pricing
More options …
Volume 61, Issue 2

Issues

Bioactivity of cement type bone substitutes

D. Siek
  • Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Ave, 30-059, Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. Czechowska
  • Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Ave, 30-059, Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ W. Mróz
  • Institute of Optoelectronics, Military Academy of Technology, 2 Gen. Sylwestra Kaliskiego Ave, 00-908 Warsaw 2, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. Zima
  • Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Ave, 30-059, Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ S. Burdyńska
  • Institute of Optoelectronics, Military Academy of Technology, 2 Gen. Sylwestra Kaliskiego Ave, 00-908 Warsaw 2, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ R. Załęczny
  • Institute of Optoelectronics, Military Academy of Technology, 2 Gen. Sylwestra Kaliskiego Ave, 00-908 Warsaw 2, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. Ślósarczyk
  • Corresponding author
  • Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Ave, 30-059, Krakow, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-08-08 | DOI: https://doi.org/10.2478/bpasts-2013-0042

Abstract

In vitro chemical stability and bioactivity of three different cement type bone substitutes were determined by incubating cement samples in the simulated body fluid (SBF) for 7 and 28 days. Morphology of sample surfaces has been studied using scanning electron microscopy (SEM) combined with an energy dispersive X-ray spectroscopy (EDS) and by atomic force microscopy (AFM). The diffuse reflectance Fourier-transform infrared spectroscopy (DRIFTS) was applied as a supplementary method. The development of bone-like apatite layers on the surface depended on their initial phase composition. Obtained cements showed good surgical handiness, high bioactive potential and were chemically stable. They seem to be promising materials for bone substitution.

Keywords : bone implants; bioactivity; surface morphology

  • [1] P. Janicki and G. Schmidmaier, “What should be the characteristics of the ideal bone graft substitute? Combining scaffolds with growth factors and/or stem cells”, Injury 42, 77-81 (2011).Web of ScienceGoogle Scholar

  • [2] T. Kokubo, “Design of bioactive bone substitutes based on biomineralization process”, Mater Sci. Eng. C 25 (2), 97-104 (2005).CrossrefGoogle Scholar

  • [3] M. Nowak, I. Firkowska, and M. Giersig, “Nanostructured bone-like scaffolds for restoration of trabecular bone remodeling capability”, Bull. Pol. Ac.: Tech. 59 (1), 57-61 (2011).Google Scholar

  • [4] T. Kokubo and H. Takadama, “How useful is SBF in predicting in vivo bone bioactivity?”, Biomaterials 27 (15), 2907-2915 (2006).CrossrefPubMedGoogle Scholar

  • [5] T. Kokubo, S. Ito, M. Shigematsu, S. Sakka, and T. Yamamuro, “Fatigue and life-time of bioactive glass-ceramic A-W containing apatite and wollastonite”, J. Mater. Sci. 22 (11), 4067-4070 (1987).CrossrefGoogle Scholar

  • [6] L.L. Hench and E.C. Ethridge, Biomaterials: An InterfacialApproach, Academic Press, New York, 1982.Google Scholar

  • [7] N.A.F. Almeida and M.H.V. Fernandes, “Effect of glass ceramic crystallinity on the formation of simulated apatite layers”, Mater. Sci. Forum 514-516, 1039-1043 (2006).Google Scholar

  • [8] M. Kamitakahara, “Novel Bone-Repairing Materials: Bioactive Organic-Inorganic Hybrids”, in: Ceramics and Composite Materials:New Research, ed. B.M. Caruta, Nova Science, New York, 2006.Google Scholar

  • [9] T. Kokubo, S. Ito, Z. Huang, T. Hayashi, S. Sakka, T. Kitsugi, and T. Yamamuro, “Ca,P-rich layer formed on high-strength bioactive glass-ceramic A-W”, J. Biomed. Mater. Res. 24, 331-343 (1987).Google Scholar

  • [10] T. Kokubo, T. Hayashi, S. Sakka, T. Kitsugi, and T. Yamamuro, “Bonding between bioactive glasses, glass-ceramics or ceramics in a simulated body fluid”, Yogyo-Kyokai-Shi 95, 785-791 (1987).Google Scholar

  • [11] S.V. Dorozhkin, “Calcium orthophosphate”, J. Mater. Sci. 42 (4), 1061-1095 (2007).CrossrefGoogle Scholar

  • [12] H. Liu and T.J. Webster, “Bioinspired Nanocomposites for Orthopedic Applications”, in: Nanotechnology for the Regenerationof Hard and Soft Tissues, ed. T.J.Webster,World Scientific Publishing Co., Singapore, 2007.Google Scholar

  • [13] B. McKay, S. Peckham, and J. Scifert, “Biologics to promote spinal fusion”, in: Spine Technology Handbook, eds. S.M. Kurtz, A.A. Edidin, Elsevier Academic Press, Boston, 2006.Google Scholar

  • [14] E. Boanini, M. Gazzano, and A. Bigi, “Ionic substitutions in calcium phosphates synthesized at low temperature”, Acta Biomater. 6 (6), 1882-1894 (2010).CrossrefWeb of SciencePubMedGoogle Scholar

  • [15] C. Knabe, A. Houshmand, G. Berger, P. Ducheyne, R. Gildenhaar, I. Kranz, and M. Stiller, “Effect of rapidly resorbable bone substitute materials on the temporal expression of the osteoblastic phenotype in vitro”, J. Biomed. Mater. Res. A 84 (4), 856-868 (2008).CrossrefWeb of ScienceGoogle Scholar

  • [16] A.K. Garg, “Review of bone-grafting materials”, in: Bone Biology,Harvesting, and Grafting for Dental Implants: Rationaleand Clinical Applications, ed. A.K. Garg, Quintessence Publishing Co., Chicago, 2004.Google Scholar

  • [17] W. Mroz, A. Bombalska, S. Burdyńska, M. Jedyński, A. Prokopiuk, B. Budner, A. Ślosarczyk, A. Zima, E. Menaszek, A. Ścisłowska-Czarnecka, and K. Niedzielski, “Structural studies of magnesium doped hydroxyapatite coatings after osteoblast culture”, J. Mol. Struct. 977 (1-3), 145-152 (2010).Web of ScienceGoogle Scholar

  • [18] R.Z. LeGeros, R. Kijkowska, C. Bautista, and J.P. LeGeros, “Synergistic effects of magnesium and carbonate on properties of biological and synthetic apatites”, Connect Tissue Res. 33 (1-3), 203-209 (1955).Google Scholar

  • [19] A. Ślosarczyk, A. Zima, Z. Paszkiewicz, J. Szczepaniak, A.H. De Aza, and A. Chrościcka, “The influence of titanium on physicochemical properties of Ti-modified hydroxyapatite materials”, Ceramic Materials 62 (3), 369-375 (2010).Google Scholar

  • [20] M.P. Ginebra, T. Traykova, and J.A. Planell, “Calcium phosphate cements as bone drug delivery systems: a review”, J. Control Release 113 (2), 102-110 (2006).CrossrefGoogle Scholar

  • [21] M. Bohner, “Physical and chemical aspects of calcium phosphates used in spinal surgery”, Eur. Spine J. 10, 114-121 (2001).Google Scholar

  • [22] E. Fernandez, F.J. Gil, M.P. Ginebra, F.C.M Driessens, and J.A. Planell, “Production and characterization of new calcium phosphate bone cements in the CaHPO4 − Ca3(PO4)2 system: pH, workability and setting times”, J. Mater. Sci. Mater. Med. 10, 223-230 (1999).CrossrefGoogle Scholar

  • [23] S. Mamidwar, M. Weiner, H. Alexander, and J. Ricci, “In vivo bone response to calcium sulfate/poly L-lactic acid composite”, Implant Dent 17 (2), 208-216 (2008).Web of ScienceCrossrefGoogle Scholar

  • [24] H.M. Jung, G.A. Song, Y.K. Lee, J.H. Baek, H.M. Ryoo, G.S. Kim, P.H. Choung, and K.M. Woo, “Modulation of the resorption and osteoconductivity of alpha-calcium sulfate by histone deacetylase inhibitors”, Biomaterials 31 (1), 29-37 (2010).Web of ScienceCrossrefGoogle Scholar

  • [25] S.L. Bahn, “Plaster: a bone substitute”, Oral Surg. Oral Med. Oral Pathol. 21 (5), 672-681 (1966).CrossrefGoogle Scholar

  • [26] M.V. Thomas and D.A. Puleo, “Calcium sulfate: Properties and clinical applications”, J. Biomed. Mater. Res. B Appl. Biomater. 88 (2), 597-610 (2009).CrossrefGoogle Scholar

  • [27] N.B. Singh and B. Middendorf, “Calcium sulphate hemihydrate hydration leading to gypsum crystallization”, Prog. Cryst. Growth Charact. Mater. 53 (1), 57-77 (2007).CrossrefWeb of ScienceGoogle Scholar

  • [28] M. Nilsson, J.S. Wang, L. Wielanek, K.E. Tanner, and L. Lidgren, “Biodegradation and biocompatability of a calcium sulphate-hydroxyapatite bone substitute”, J. Bone Joint Surg. Br. 86 (1), 120-125 (2004).Google Scholar

  • [29] D.C. Martin, J.R. Ojeda, J.P. Anderson, and P. Pingali, “Atomic force microscopy of polymer droplets”, in: Atomic ForceMicroscopy/Scanning Tunneling Microscopy, eds. S.H. Cohen, M.T. Bray, M.L. Lightbody, Plenum Press, New York, 1994.Google Scholar

  • [30] I.B. Leonor, A. Ito, K. Onuma, N. Kanzaki, and R.L. Reis, “In vitro bioactivity of starch thermoplastic/hydroxyapatite composite biomaterials: an in situ study using atomic force microscopy”, Biomaterials 24 (4), 579-585 (2003).CrossrefGoogle Scholar

  • [31] A. Zima, Z. Paszkiewicz, D. Siek, J. Czechowska, and A. Ślosarczyk, “Study on the new bone cement based on calcium sulfate and Mg, CO3doped hydroxyapatite”, Ceram Int. 38 (6), 4935-4942 (2012).Web of ScienceGoogle Scholar

  • [32] J. Czechowska, Z. Paszkiewicz, A. Zima, D. Pijocha, and A. Ślosarczyk, “Influence of heat treatment of titanium-doped hydroxyapatite (TiHA) on properties and in vitro behaviour of calcium sulfate-TiHA composites”, Ceramic Materials 63 (4), 758-764 (2011).Google Scholar

  • [33] ASTM C266-04, ASTM Annual Book of standards, “Standard test method for time setting of hydraulic-cement paste by gillmore needles”, PA 19428-2959, USA.Google Scholar

  • [34] M. Topic, T. Ntsoane, and R.B. Heimann, “Microstructural characterisation and stress determination in as-plasma sprayed and incubated bioconductive hydroxyapatite coatings”, Surf. Coat Technol. 201 (6), 3633-3641 (2006).Google Scholar

  • [35] K. Gomi and J.E. Davies, “Guided bone tissue elaboration by osteogenic cells in vitro”, J. Biomed. Mater. Res. 27 (4), 429-431 (1993).Google Scholar

  • [36] T. Ballet, L. Boulange, Y. Brechet, F. Bruckert, and M.Weidenhaupt, “Protein conformational changes induced by adsorption onto material surfaces: an important issue for biomedical applications of materials science”, Bull. Pol. Ac.: Tech. 58 (2), 303-315 (2010). Web of ScienceGoogle Scholar

About the article

Published Online: 2013-08-08

Published in Print: 2013-06-01


Citation Information: Bulletin of the Polish Academy of Sciences: Technical Sciences, Volume 61, Issue 2, Pages 433–439, ISSN (Print) 0239-7528, DOI: https://doi.org/10.2478/bpasts-2013-0042.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in