[1] A. Dzieliński, D. Sierociuk, and G. Sarwas, “Some applications of fractional order calculus”, *Bull. Pol. Ac.: Tech. *58 (4), 583-592 (2010).Google Scholar

[2] D. Sierociuk, A. Dzieliński, G. Sarwas, I. Petras, I. Podlubny, and T. Skovranek, “Modelling heat transfer in heterogeneous media using fractional calculus”, *Phil. Trans. R. Soc. *A (371), 20130146 (2013).Google Scholar

[3] D. Sierociuk and B.M. Vinagre, “Infinite horizon statefeedback LQR controller for fractional systems”, *Decision and**Control (CDC), 2010 49th IEEE Conf. *1, 6674-6679 (2010).Google Scholar

[4] C. Tricaud and Y.Q. Chen, “An approximate method for numerically solving fractional order optimal control problems of general form”, *Comput. Math. Appl. *59, 1644-1655 (2010).CrossrefGoogle Scholar

[5] C. Tricaud and Y.Q. Chen, “Time-optimal control of systems with fractional dynamics”, *Int. J. Differ. Equ. *1, 1-16 (2010).Google Scholar

[6] M. Busłowicz, “Stability analysis of continuous-time linear systems consisting of n subsystems with different fractional orders”, *Bull. Pol. Ac.: Tech. *60 (2), 279-284 (2012).Web of ScienceGoogle Scholar

[7] R. Bellman, *Dynamic Programming*, University Press, Princeton, 1957.Google Scholar

[8] T. Kaczorek, *Control Theory*, vol. II, PWN, Warsaw, 1981, (in Polish).Google Scholar

[9] F.L. Lewis and V.L. Syrmos, *Optimal Control*, 2nd ed, Wiley- IEEE, London, 1995.Google Scholar

[10] D.S. Naidu, *Optimal Control Systems*, Electrical Engineering, CRC Press, Inc., Boca Raton, 2002.Google Scholar

[11] P. Ostalczyk, *Epitome of the Fractional calculus: Theory and**Its Applications in Automatics*, Lodz University of Technology Publishing House, Łodź, 2008.Google Scholar

[12] I. Podlubny, *Fractional Differential Equations. An Introduction**to Fractional Derivatives, Fractional Differential Equations,**Some Methods of Their Solution and Some of Their Applications*, Academic Press, San Diego, 1999.Google Scholar

[13] S.G. Samko, A.A. Kilbas, and O.I. Marichev, *Fractional Integrals**and Derivatives: Theory and Applications*, Gordon and Breach Science, New York, 1993.Google Scholar

[14] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, *Theory and**Applications of Fractional Differential Equations*, vol. 204, Elsevier Science Inc., New York, 2006.Google Scholar

[15] F. Liu, M.M. Meerschaert, S. Momani, N.N. Leonenko, C. Wen, and O.P. Agrawal, “Fractional differential equations”, *Int. J. Differ. Equations *464321, CD-ROM (2010).Google Scholar

[16] X. Cai and F. Liu, “Numerical simulation of the fractionalorder control system”, *J. Appl. Math. Comput. *23, 229-241 (2007).CrossrefGoogle Scholar

[17] M.M. Meerschaert and C. Tadjeran, “Finite difference approximations for fractional advection-dispersion flow equations”, *J. Computational and Applied Mathematics *172 (1), 65-77 (2004).Google Scholar

[18] O.P. Agrawal, “Formulation of Euler - Lagrange equations for fractional variational problems”, *J. Mathematical Analysis and**Applications *272 (1), 368-379 (2002).Google Scholar

[19] O.P. Agrawal, “A general formulation and solution scheme for fractional optimal control problems”, *Nonlinear Dynamics *38, 323-337 (2004).CrossrefGoogle Scholar

[20] O.P. Agrawal, “Fractional variational calculus and the transversality conditions”, *J. Physics Math. Theor. *39, 10375-10384 (2006).CrossrefGoogle Scholar

[21] O.P. Agrawal, “Fractional variational calculus in terms of Riesz fractional derivatives”, *J. Physics. Math. Theor. *40 (24), 6287-6303 (2007).CrossrefGoogle Scholar

[22] O.P. Agrawal, “A general finite element formulation for fractional variational problems”, *J. Mathemat. Analysis and Appl.* 337 (1), 1-12 (2008).Google Scholar

[23] G.S.F. Frederico and D.F.M. Torres, “Fractional conservation laws in optimal control theory”, *Nonlinear Dynamics *53 (3), 215-222 (2008).CrossrefWeb of ScienceGoogle Scholar

[24] Z. D. Jelicic and N. Petrovacki, “Optimality conditions and a solution scheme for fractional optimal control problems”, *J**Struct Multidisciplinary Optimization *38 (6), 571-581 (2008).Google Scholar

[25] R.K. Biswas and S. Sen, “Fractional optimal control problems with specified final time”, *ASME J. Comput. Nonlinear Dyn*. 6, 021009.1-021009.6 (2011).Google Scholar

[26] R.K. Biswas and S. Sen, “Fractional optimal control problems: a pseudo-state-space approach”, *J. Vib. Control *17, 1034-1041 (2010).Web of ScienceGoogle Scholar

[27] D. Sierociuk and A. Dzieliński, “Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation”, *Int. J. Appl. Math. Comput. Sci. *16 (1), 129-140 (2006).Google Scholar

[28] D. Sierociuk, I. Tejado, and B.M. Vinagre, “Improved fractional Kalman filter and its application to estimation over lossy networks”, *Signal Processing *91 (3), 542-552 (2011).CrossrefGoogle Scholar

[29] T. Kaczorek, “New stability tests of positive standard and fractional linear systems”, *Circuits and Systems *2, 261-268 (2011).Google Scholar

[30] T. Kaczorek, “Positive linear systems consisting of n subsystems with different fractional orders”, *IEEE Trans. on Circuits**and Systems *58, 1203-1210 (2011).Web of ScienceGoogle Scholar

[31] T. Kaczorek, *Selected Problems of Fractional Systems Theory*, *Lecture Notes in Control and Information Sciences *411, Springer, Berlin, 2011.Web of ScienceGoogle Scholar

[32] T. Kaczorek, “Positive fractional continuous-time linear systems with singular pencils”, *Bull. Pol. Ac.: Tech*. 60 (1), 9-12 (2012).Web of ScienceGoogle Scholar

[33] A. Dzieliński and P. M. Czyronis, “Fixed final time optimal control problem for fractional dynamic systems - linear quadratic discrete-time case”, *Advances in Control Theory and**Automation *1, 71-80 (2012).Google Scholar

[34] A. Dzieliński and P. M. Czyronis, “Computer algorithms for solving optimization problems for discrete-time fractional systems”, *Eur. Control Conf. ECC *1, CD-ROM (2013). Google Scholar

## Comments (0)