Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Bulletin of the Polish Academy of Sciences Technical Sciences

The Journal of Polish Academy of Sciences

6 Issues per year


IMPACT FACTOR 2016: 1.156
5-year IMPACT FACTOR: 1.238

CiteScore 2016: 1.50

SCImago Journal Rank (SJR) 2016: 0.457
Source Normalized Impact per Paper (SNIP) 2016: 1.239

Open Access
Online
ISSN
2300-1917
See all formats and pricing
More options …
Volume 62, Issue 2

Issues

Finite-dimensional approximations of distributed RC networks

W. Mitkowski
  • AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, Department of Automatics and Biomedical Engineering, 30/B1 A. Mickiewicza Ave., 30–059 Krakow, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-06-13 | DOI: https://doi.org/10.2478/bpasts-2014-0026

Abstract

Spectral properties of ladder and spatial electrical networks are considered. Dynamic properties of the networks are characterised by eigenvalues of the Jacobi cyclic state matrix. The effective formulas for eigenvalues of appropriate uniform systems are given. Numerical calculations were made using MATLAB.

Keywords: ladder and ring electrical networks; finite-dimensional approximations; eigenvalues of ladder networks; Jacobi matrix

References

  • [1] M. Janicki, J. Banaszczyk, B. Vermeersch, G. De Mey, and A. Napieralski, “Generation of reduced thermal models of electronic systems from time constant spectra of transient temperature responses”, Microelectronics Reliability 51 (8), 1351-1355 (2011).CrossrefWeb of ScienceGoogle Scholar

  • [2] J. Roszkiewicz, Distributed RC Systems, WKiŁ, Warszawa, 1972, (in Polish).Google Scholar

  • [3] A. Auer, Analog Modeling of Distributed Processes, MM PWN, Warszawa, 1976, (in Polish).Google Scholar

  • [4] A.G. Butkowski, Optimal Control Systems with Distributed Parameters, Moskwa, 1965, (in Russian).Google Scholar

  • [5] K. Deng, P. Barooah, P.G. Mehta, and S.P. Meyn, “Building thermal model reduction via aggregation of states”, American Control Conf. 1, 5118-5123 (2010).Google Scholar

  • [6] E. Kącki, Partial Differential Equations in Physics and Engineering. WNT, Warszawa, 1992, (in Polish).Google Scholar

  • [7] R. Marshall, “Modeling DNA/RNA strings using resistor- capacitor (rc) ladder networks”, Computer J. 53 (6), 644-660 (2009).Google Scholar

  • [8] S.G. Michlin and C.L. Smolicki, Approximate Methods of Solving Differential and Integral Equations, PWN, Warszawa, 1970, (in Polish).Google Scholar

  • [9] T. Cholewicki, An Electrical Long Lines and Nonuniform Ladder Networks, PWN, Warszawa, 1974, (in Polish).Google Scholar

  • [10] W. Mitkowski, “Approximation of an infinite line by a ladder network”, Archives Electrotechnics 25 (4), 943-953 (1976), (in Polish).Google Scholar

  • [11] W. Mitkowski, “Uniform spatial networks RC”, Archives Electrotechnics 22 (2), 397-405 (1973), (in Polish).Google Scholar

  • [12] W. Mitkowski, “Uniform spatial networks RC (RL and GC) type”, Proc. SSCT 74 2, 73-76 (1974).Google Scholar

  • [13] R. Bellman, Introduction to Matrix Analysis, McGraw-Hill, New York, 1960.Google Scholar

  • [14] F.R. Gantmaher, Theory of Matrix, 4 ed., Nauka, Moskwa, 1988, (in Russian).Google Scholar

  • [15] W.P. Ilin and Yu.I. Kuznyetsow, Tridiagonal Matrices and Their Applications, Nauka, Moskwa, 1985, (in Russian).Google Scholar

  • [16] P. Lancaster, Theory of Matrix, Academic Press, New York, 1969.Google Scholar

  • [17] A. Turowicz, Theory of Matrix, 6 ed., AGH, Krakow, 2005, (in Polish).Google Scholar

  • [18] Z. Bubnicki, “Input impedance and transfer function of a ladder network”, IEEE Trans. on Circuit Theory 10, 286-287 (1963).Google Scholar

  • [19] W. Mitkowski, Synthesis of RC-ladder network, Bull. Pol. Ac.: Tech. 42, 33-37 (1994).Google Scholar

  • [20] M.N.S. Swamy, “Network properties of a pair of generalized polynomials”, Circuits and Systems, IEEE Proc. 1, 114-117 (1998).Google Scholar

  • [21] G. Sarwas, “Modelling and control of systems with ultracapacitors using fractional order calculus”, Doctoral Thesis, pp. 1-102, Warsaw University of Technology, Faculty of Electrical Engineering, Warszawa, 2012.Google Scholar

  • [22] R. Caponetto, G. Dongola, L. Fortuna, and I. Petráš, Fractional Order Systems: Modeling and Control Applications, World Scientific, London, 2010.Google Scholar

  • [23] A. Dzielinski, G. Sarwas, and D. Sierociuk “Comparison and validation of integer and fractional order ultracapacitor models”, Advances in Difference Equations 1, 11-23, (2011).Google Scholar

  • [24] W. Mitkowski and P. Skruch, “Fractional-order models of the supercapacitors in the form of RC ladder networks”, Bull. Pol. Ac.: Tech. 61 (3), 581-587 (2013).Google Scholar

  • [25] W. Mitkowski, “Dynamic properties of chain systems with applications to biological models”, Archives of Control Sciences 9 (XLV), 123-131 (1999).Google Scholar

  • [26] M. Alioto, G. Palumbo, and M. Poli, “An approach to energy consumption modeling in RC ladder circuits”, in Integrated Circuit Design. Power and Timing Modeling, Optimization and Simulation Lecture Notes in Computer Science, vol. 2451, pp. 239-246, Springer, Berlin, 2002.Google Scholar

  • [27] M. Alioto, G. Palumbo, and M. Poli, “Evaluation of energy consumption in RC ladder circuits driven by a ramp input”, IEEE Trans. on Very Large Scale Integration (VLSI) Systems 12 (10), 1094-1107 (2004).CrossrefGoogle Scholar

  • [28] J. Baranowski and W. Mitkowski, “Semi-analytical methods for optimal energy transfer in RC ladder networks”, Przegląd Elektrotechniczny (Electrical Review) 88 (9a), 250-254 (2012).Google Scholar

  • [29] W. Mitkowski, “Remarks about energy transfer in an RC ladder network”, Int. J. Appl. Math. Comput. Sci. 13 (2), 193-198 (2003).Google Scholar

  • [30] J. Cheng and T. Berger, “On minimal eigenvalues of a class of tridiagonal matrices”, IEEE Trans. on Information Theory 55 (11), 5024-5031 (2009).Web of ScienceGoogle Scholar

  • [31] W. Mitkowski, “Remarks on stability of positive linear systems”, Control and Cybernetics 29 (1), 295-304 (2000).Google Scholar

  • [32] J. Klamka, Controllability of Dynamic Systems, PWN, Warszawa, 1990, (in Polish).Google Scholar

  • [33] J. Klamka, “Controllability of Dynamical Systems”, Matematyka Stosowana 9, 57-75 (2008).Google Scholar

  • [34] J. Klamka, “Constrained approximate controllability”, IEEE Trans. on Automatic Control 45, 1745-1749 (2000).Google Scholar

  • [35] A. Djouambi, A. Charef, and A. Voda Besanc,on, “Optimal approximation, simulation and analog realization of the fundamental fractional order transfer function”, Int. J. Appl. Math. Comput. Sci. 17 (4), 455-462 (2007).Web of ScienceGoogle Scholar

  • [36] T. Kaczorek, Selected Problems in Fractional Systems Theory, Springer-Verlag, Berlin, 2011.Google Scholar

  • [37] T. Kaczorek and Ł. Sajewski, Realization Problem for Positive and Fractional Systems, Printing House of Bialystok University of Technology, Białystok, 2013.Google Scholar

  • [38] J. Klamka, “Controllability and minimum energy control problem of fractional discretetime systems”, in New Trends in Nanotechology and Fractional Calculus, eds. D. Baleanu, Z.B. Guvenc and J.A. Tenreiro Machado, pp. 503-509, Springer- Verlag, New York, 2010.Google Scholar

  • [39] J. Klamka, “Local controllability of fractional discrete-time nonlinear systems with delay in control”, in: Advances in Control Theory and Automation, eds. M. Busłowicz and K. Malinowski, pp. 25-34, Printing House of Białystok University of Technology, Białystok, 2012. Google Scholar

About the article

Published Online: 2014-06-13

Published in Print: 2014-06-01


Citation Information: Bulletin of the Polish Academy of Sciences Technical Sciences, Volume 62, Issue 2, Pages 263–269, ISSN (Online) 2300-1917, DOI: https://doi.org/10.2478/bpasts-2014-0026.

Export Citation

© Bulletin of the Polish Academy of Sciences. Technical Sciences. This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in