[1] B. Collins and P. Śniady, “Integration with respect to the Haar measure on unitary, orthogonal and symplectic group”, Commun. Math. Phys. 264, 773-795 (2006).Google Scholar

[2] N. Ullah and C. Porter. “Expectation value fluctuations in the unitary ensemble”, Physical Review 132 (2), 948 (1963).Google Scholar

[3] D. Weingarten, “Asymptotic behavior of group integrals in the limit of infinite rank”, Journal of Mathematical Physics 19, 999 (1978).CrossrefGoogle Scholar

[4] Z. Puchała and J. A. Miszczak, “IntU package for Mathematica” (2011). Software available at http://zksi.iitis.pl/wiki/projects:intu.Google Scholar

[5] W. Fulton and J. Harris, Representation Theory: A First Course - Graduate Texts in Mathematics vol. 129, Springer Verlag (1991).Google Scholar

[6] G. James and A. Kerber, “The representation theory of the symmetric group”, Encyclopaedia of Mathematics, vol .16 (1981).Google Scholar

[7] B. Sagan, The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, Springer Verlag (2001).Google Scholar

[8] D. Bernstein, “The computational complexity of rules for the character table of Sn”, Journal of Symbolic Computation 37 (6), 727-748 (2004).CrossrefGoogle Scholar

[9] F. Hiai and D. Petz, “The semicircle law, free random variables and entropy”, Amer. Mathematical Society 77 (2006).Google Scholar

[10] C. Donati-Martin and A. Rouault, “Truncations of Haar unitary matrices, traces and bivariate Brownian bridge”. Arxiv preprint, arXiv:1007.1366 (2010).Google Scholar

[11] Z. Puchała, J. A. Miszczak, P. Gawron, C. F. Dunkl, J. A. Holbrook, and K. Życzkowski, “Restricted numerical shadow and the geometry of quantum entanglement”, Journal of Physics A: Mathematical and Theoretical 45 (41), 415309 (2012).Google Scholar

[12] J. Miszczak, “Generating and using truly random quantum states in Mathematica”, Comput. Phys. Commun. 183 (1), 118-124 (2012).Web of ScienceGoogle Scholar

[13] C. F. Dunkl, P. Gawron, J. A. Holbrook, Z. Puchała, and K. Życzkowski, “Numerical shadows: measures and densities on the numerical range”, Linear Algebra Appl. 434, 2042-2080 (2011).Google Scholar

[14] C. F. Dunkl, P. Gawron, J. A. Holbrook, J. A. Miszczak, Z. Puchała, and K. Życzkowski, “Numerical shadow and geometry of quantum states”, J. Phys. A: Math. Theor. 44 (33), 335301 (2011).Google Scholar

[15] M. Enríquez, Z. Puchała, and K. Życzkowski, “Minimal Rényi- -Ingarden-Urbanik entropy of multipartite quantum states”, Entropy 17 (7), 5063 (2015). CrossrefGoogle Scholar

## Comments (0)