Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Bulletin of the Polish Academy of Sciences Technical Sciences

The Journal of Polish Academy of Sciences

6 Issues per year


IMPACT FACTOR 2016: 1.156
5-year IMPACT FACTOR: 1.238

CiteScore 2016: 1.50

SCImago Journal Rank (SJR) 2016: 0.457
Source Normalized Impact per Paper (SNIP) 2016: 1.239

Open Access
Online
ISSN
2300-1917
See all formats and pricing
More options …
Volume 65, Issue 2 (Apr 2017)

Issues

Stable scheduling of single machine with probabilistic parameters

W. Bożejko
  • Corresponding author
  • Department of Control Systems and Mechatronics, Faculty of Electronics, Wrocław University of Science and Technology, Wyb. Wyspiańskiego, 50-370 Wrocław, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ P. Rajba
  • Institute of Computer Science, University of Wrocław, 15 Joliot-Curie St., 50-383 Wrocław, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Wodecki
  • Institute of Computer Science, University of Wrocław, 15 Joliot-Curie St., 50-383 Wrocław, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-04-22 | DOI: https://doi.org/10.1515/bpasts-2017-0026

Abstract

We consider a stochastic variant of the single machine total weighted tardiness problem jobs parameters are independent random variables with normal or Erlang distributions. Since even deterministic problem is NP-hard, it is difficult to find global optimum for large instances in the reasonable run time. Therefore, we propose tabu search metaheuristics in this work. Computational experiments show that solutions obtained by the stochastic version of metaheuristics are more stable (i.e. resistant to data disturbance) than solutions generated by classic, deterministic version of the algorithm.

Keywords: scheduling; uncertain parameters; tabu search; stability

References

  • [1] B. Alidee, I. Dragon, “A note on minimizing the weighted sum of tardy and early completion penalties in a single machine”, Journal of Operational Research 96 (3), 559-563 (1997).Google Scholar

  • [2] W. Bożejko, J. Grabowski, M. Wodecki, “Block approach-tabu search algorithm for single machine total weighted tardiness problem”, Computers & Industrial Engineering 50, 1-14 (2006).CrossrefGoogle Scholar

  • [3] W. Bożejko, M. Wodecki, “On the theoretical properties of swap multimoves”, Operations Research Letters 35(2), 227-231 (2007).Web of ScienceCrossrefGoogle Scholar

  • [4] W. Bożejko, “Parallel path relinking method for the single machine total weighted tardiness problem with sequence-dependent setups”, Journal of Intelligent Manufacturing 21(6), 777-785 (2010).Web of ScienceCrossrefGoogle Scholar

  • [5] X. Cai, X. Zhou, “Single-machine scheduling with expotential processing times and general stochastic cost functions”, Journal of Global Optimization 31, 317-332 (2005).CrossrefGoogle Scholar

  • [6] X. Cai, X. Wu, X. Zhou, “Optimal stochastic scheduling”, International Series in Operations Research & Management Science 207, Springer, 2014.Web of ScienceGoogle Scholar

  • [7] H.A.J. Crauwels, C.N. Potts, L.N. Van Wassenhove, “Local search heuristics for the single machine total weighted tardiness scheduling problem”, INFORMS Journal on Computing 10(3), 341-350 (1998).CrossrefGoogle Scholar

  • [8] B.C. Dean, “Approximation algorithms for stochastic scheduling problems”, PhD thesis, Massachusetts Institute of Technology (2005).Google Scholar

  • [9] M.T. Den Basten, M. Stützle, M. Dorigo, “Design of iterated local search algoritms. An example application to the single machine total weighted tardiness problem”, J.W.Boers et al. (eds.) Evo Worskshop 2001, Lecture Notes in Computer Science 2037, 441-451 (2001).Google Scholar

  • [10] A. Elyasi, N. Salmasi, “Stochastic scheduling with minimizing the number of tardy jobs using chance constrained programming”, Mathematical and Computer Modeling 57, 1154-1164 (2013).Google Scholar

  • [11] Hu, K., Zhang, X., Gen, M., Jo J., “A new model for single machine scheduling with uncertain processing time”, Journal of Intelligent Manufacturing, DOI 10.1007/s10845‒015‒1033‒9, 1-9 (2015).CrossrefWeb of ScienceGoogle Scholar

  • [12] W. Jang, “Dynamic scheduling of stochastic jobs a single machine”, European Journal of Operational Research, 138, 518-503 (2002).Google Scholar

  • [13] G. Kirlik, C. Oguz, “A variable neighbourhood search for minimizing total weighted tardiness with sequence dependent setup times on a single machine”, Computers&Operatins Research 39, 1506-1520 (2012).Google Scholar

  • [14] A. Lann, G. Mosheiov, “Single machine scheduling to minimize the number of early and tardy jobs”, Computers and Operations Research, 23(8), 769-781 (1996).CrossrefGoogle Scholar

  • [15] J.K. Lenstra, A.G.H. Rinnoy Kan, A.G.H., P.Brucker, “Complexity of machine scheduling problems”, Annals of Discrete Mathematics 1, 343-362 (1977).CrossrefGoogle Scholar

  • [16] W. Li, W.J. Braun, Y.Q. Zhao, “Stochastic scheduling on a repairable machine with Erlang uptime distribution”, Advances in Applied Probability 30(4), 1073-1088 (1998).CrossrefGoogle Scholar

  • [17] Y. Li, R. Chen, “Stochastic single machine scheduling to minimize the weighted number of tardy jobs”, B.-Y.Cao et al. (eds.): Fuzzy Information and Engineering, AISC, 363-368 (1998).Google Scholar

  • [18] M.M Mazdeh., H. Hadad, P. Ghanbari, “Solving a single machine stochastic scheduling problem using a branch and bound algorithm and simulated annealing”, International Journal of Management Science and Engineering Management 7(2), 110-118 (2012).Google Scholar

  • [19] M. Nawaz, E.E. Enscore, I. Ham, “A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem”, OMEGA 11(1), 91-95 (1983).Google Scholar

  • [20] OR-Library https://files.nyu.edu/jeb21/public/jeb/info.htmlGoogle Scholar

  • [21] M.L. Pinedo: Scheduling: Theory, Algorithms, and Systems, fourth edition, Springer New York Dordrecht Heidelberg London (2010).Google Scholar

  • [22] C.N. Potts, L.N. Van Wassenhove, “A branch and bound algorithm for the total weighted tardiness problem”, Operations Research 33, 177-181 (1985).CrossrefGoogle Scholar

  • [23] C.N. Potts, L.N. Van Wassenhove, “Single machine tardiness sequencing heuristics”, IIE Transactions 23, 346-354 (1991).CrossrefGoogle Scholar

  • [24] W.E. Smith, “Various optimizers for single-stage production”, Naval Research Logist Quartely 3, 59-66 (1956).Google Scholar

  • [25] H.M. Soroush, “Single machine scheduling with stochastic processing times or stochastic due-dates to minimize the number of early and tardy jobs”, International Journal of Operations Research 3(2), 90-108 (2006).Google Scholar

  • [26] H.M. Soroush, “Minimizing the weighted number of early and tardy jobs in a stochasic single machine scheduling problem”, European Journal of Operational Research 181, 266-287 (2007).Google Scholar

  • [27] J.M. Van den Akker, H. Hoogeveen, “Minimizing the number of late jobs in a stochastic setting using a chance constraint”, Journal of Scheduling 11, 59-69 (2008).CrossrefGoogle Scholar

  • [28] J. Vondrák, “Probabilistic methods in combinatorial and stochastic optimization”, PhD Thesis, MIT (2005).Google Scholar

  • [29] M. Wodecki, “A branch-and-bound parallel algorithm for single- machine total weighted tardiness problem”, Advanced Manufacturing Technology 37, 996-1004 (2008).Google Scholar

  • [30] M. Wodecki, “A block approach to earliness-tardiness scheduling problems”, International Journal on Advanced Manufacturing Technology 40, 797-807 (2009).Google Scholar

About the article

Published Online: 2017-04-22

Published in Print: 2017-04-01


Citation Information: Bulletin of the Polish Academy of Sciences Technical Sciences, ISSN (Online) 2300-1917, DOI: https://doi.org/10.1515/bpasts-2017-0026.

Export Citation

© Bulletin of the Polish Academy of Sciences. Technical Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in