Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Scientific Bulletin of Valahia University - Materials and Mechanics

2 Issues per year

Open Access
Online
ISSN
2537-3161
See all formats and pricing
More options …

Data Scattering in Strength Measurement of Steels and Glass/Epoxy Composite

Adrian Catangiu
  • Corresponding author
  • University of Targoviste, Faculty of Materials Engineering and Mechanics, Department of Materials Engineering, Mechatronics and Robotics, 13 Aleea Sinaia Street, Targoviste, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dan Nicolae Ungureanu
  • Valahia University of Targoviste, Faculty of Materials Engineering and Mechanics, Department of Materials Engineering, Mechatronics and Robotics, 13 Aleea Sinaia Street, Targoviste, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Veronica Despa
  • Valahia University of Targoviste, Faculty of Materials Engineering and Mechanics, Department of Materials Engineering, Mechatronics and Robotics, 13 Aleea Sinaia Street, Targoviste, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-05-09 | DOI: https://doi.org/10.1515/bsmm-2017-0002

Abstract

The strength of materials is a complex function which involve two main components, material nature and the presence of defects. Usually glasses exhibit a fragile behavior due to a numerous flaws and the effect is a large range of data scattering in tensile strength measurement. The Weibull probability density function was applied to describe the scatter of experimental data in tensile test, which emphasize a difference between variance in case of tensile strength of three stainless steel grades and glass epoxy composite. The main goal is mathematical modeling of those distributions and finding of equations which predict the probability of failure for a sample subjected to a specific stress.

Keywords: Weibull distribution function; tensile strength data scattering; glass/epoxy composite; analysis of variance

References

  • [1] W. Weibull, A statistical theory of the strength of materials, Proceeding of the Royal Swedish Institute of Engineering Research ,151,1 (1939).Google Scholar

  • [2] J. Schijve, Statistical distribution functions and fatigue of structures, International Journal of Fatigue 27, 1031-1039, (2005)CrossrefGoogle Scholar

  • [3] S. Mohd, Y. Otsuka, Y. Miyashita, Y. Mutoh, Statistic characteristics of fatigue properties in magnesium alloy, Procedia Engineering 10, 1232, (2011)Google Scholar

  • [4] Yan Lv, H.Cheng, Z. Ma, Procedia Engineering, Fatigue performances of glass fiber reinforced concrete in flexure ,31, 550 (2012)Google Scholar

  • [5] T. Tagawa, M. Ohata, F. Minami, Statistical evaluation of fracture toughness with stable crack extension, Procedia Engineering 10, 827, (2011)Google Scholar

  • [6] M. J. Lamela, A. Ramos, P. Fernández, A. Fernández-Canteli, C. Przybilla, C. Huerta, A. Pacios, Probabilistic characterization of glass under different type of Testing, Proceeding Materials Science, 3, 2111 ( 2014 )Google Scholar

  • [7] M. E. A. Fidelis, T.V.C. Pereira, O. F.,M. Gomes, F.A. Silva, R.,D.T.Filho, The effect of fiber morphology on the tensile strength of natural fibers, Journal of Materials Research and Technology, 2(2), 149, (2013)Google Scholar

  • [8] X Hu, L.Liang, S.Yang, Weibull-strength size effect and common problems with size effect models, Proceedings of the 8th International Conference on Fracture Mechanics of Concrete and Concrete Structures,FraMCoS-8 https://www.researchgate.net/publication/268152093_weibullstrength_size_effect_and_common_problems_with_size_effect_model, (2013)Google Scholar

  • [9] R. Asthana, A. Kumar, N. Dahotre, Materials Science in manufacturing, Academic Press, Elsevier Inc., (2006)Google Scholar

  • [10] C. Przybilla,A. Fernández-Cantelia, E. Castillo, An iterative method to obtain the specimen-independent three parameter Weibull distribution of strength from bending, Procedia Engineering, 10, 1414, (2011)Google Scholar

  • [11] G. Peiying, D. Chang, T. Lei, Determination of local damage probability in concrete structure, Procedia Engineering, 28, 489, (2012)Google Scholar

  • [12] L. Sachs, Angewandte Statistik, Springer, 427 - 431, (1997)Google Scholar

  • [13] I. Ciuca, S. Dimitriu, Modeling and optimization of plastic deformation and heat treatment metallurgical processes (in romanian), Modelarea si optimizarea proceselor metalurgice de deformare plastica si tratamente termice, Ed. Didactica si Pedagogica Bucharest, (1998)Google Scholar

About the article

Published Online: 2017-05-09

Published in Print: 2017-04-25


Citation Information: Scientific Bulletin of Valahia University - Materials and Mechanics, ISSN (Online) 2537-3161, DOI: https://doi.org/10.1515/bsmm-2017-0002.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in