Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Scientific Bulletin of Valahia University - Materials and Mechanics

2 Issues per year

Open Access
See all formats and pricing
More options …

A Comparative Study on the Properties of Potentially Bioactive Glasses Obtained by Sol-Gel Technique and by Melting Mixtures of Oxides

Daniela Avram / Dan Ungureanu / Nicolae Angelescu / José Barroso de Aguiar
Published Online: 2017-11-28 | DOI: https://doi.org/10.1515/bsmm-2017-0013


Phosphocalcic glasses, based on ternary system SiO2 - CaO- P2O5 and those doped with copper (SiO2 – CaO - P2O5 - Cu2O) can be obtained by the traditional method of sub-cooling melts or modern methods such as process that uses mechanical energy, neutrons action, deposition in thin layers or by sol-gel technique. This paper shows the experimental results of three compositional phosphocalcic glasses: 50% SiO2 - 43% CaO - 7% P2O5, 50% SiO2 - 38% CaO - 7% P2O5 - 5% Cu2O obtained through sol-gel method and 45% SiO2 - 22.5% CaO - 22.5 Na2O - 5% P2O5 - 5% Cu2O obtained by melting. In order to study their bioactivity, the three compositions were structural analyzed by X-ray diffraction method. In this case the apatite formation was highlighted after soaked in simulated body fluid, but also other compounds (CaCO3 and CuO) resulting from the same process were observed. In case of the melting glass apatite formation has not been highlighted. The functional groups present in the structure of glasses before and after soaking (PO43−, CO32− and HO) were highlighted by the Fourier Transform Infrared Spectroscopy (FTIR). The elemental chemical composition was confirmed by elemental analysis WD-XRF. The morphology of sol-gel glass powders was revealed by SEM analysis. All glass compositions were tested in terms of antibacterial activity in vitro.

Keywords: phosphocalcic glasses; WD-XRF; XRD; FTIR; SEM; antibacterial activity; copper


  • [1] L. L. Hench – „Bioactive Ceramics”, in Bioceramics: Material Characteristics vs In Vivo Behaviour, 523, p. 54, Ed. P. Ducheyne and J. Lemons, Annals of N.Y. Academy of Science, New York, 1998.Google Scholar

  • [2] A. L. Andrade, P. Valerio, A. M. Goes, M. de Fatima Leite, R. Z. Domingues, J. Of Non-Crystalline Solids, 352:3508-11, 2006.Google Scholar

  • [3] M. G. Cerruti, D. Greenspan, K. Powers, Biomaterials, 26:4903-11, 2005.CrossrefGoogle Scholar

  • [4] E. Saiz, M. Goldman, J. M. Gomez-Vega, A. P. Tomsia, G. W. Marshall, S. J. Marshall, Biomaterials, 23:3749-56, 2002.CrossrefGoogle Scholar

  • [4] P. N. De Aza, A. H. De Aza, P. Pena, S. De Aza - Bioactive glasses and glass-ceramics, Bol. Soc. Esp. Ceram. 46, p. 45–55, 2007Google Scholar

  • [6] C. Ohtsuki, T. Kokubo, K. Takatsuka, T. Yamamuro - Compositional dependence of bioactivity of glass in the system CaO-SiO2-P2O5: its in vitro evaluation, J. Ceram. Soc. Japan, 99, p.1-6, 1991.Google Scholar

  • [7] L. L. Hench – Ceramics, Glasses, and Glass–Ceramics in Biomaterials Science, An Introduction to Materials in Medicine; B. D. Ratner, A. S. Hoffman, F.J. Schoen, J. E. Lemons, Ed. Academic Press: San Diego, p. 73–84, 2004.Google Scholar

  • [8] V. Despa, A. Catangiu, D.N. Ungureanu, I.A. Ivan-Surface structure of CoCrMo and Ti6Al4V parts obtained by selective laser sintering, Journal of Optoelectronics and Advanced Materials, Vol. 15, No. 7-8: 858 – 862, 2013.Google Scholar

  • [9] F.V. Anghelina, D. Ungureanu, V. Bratu, I.N. Popescu, C.O. Rusanescu, Fine Structure Analysis of Biocompatible Ceramic Materials Based Hydroxyapatite and Metallic Biomaterials 316L, APPL SURF SCI, 285 A: 65-71, 2013.Google Scholar

  • [10] U. Joosten, A. Joist, T. Frebel, B. Brandt, S. Diederichs, C. Von Eiff - Evaluation of an in situ setting injectable calcium phosphate as a new carrier material for gentamicin in the treatment of chronic osteomyelitis: studies in vitro and in vivo. Biomaterials,. 25:4287–95, 2004.Google Scholar

  • [11] W. C. Liu, C. T. Wong, M. K. Fong, W. S. Cheung, R. Y. T. Kao, K. D. K. Luk, ş. a. - Gentamicin-loaded strontium-containing hydroxyapatite bioactive bone cement—an efficient bioactive antibiotic drug delivery system. J Biomed Mater Res B Appl Biomater., 95:397–406, 2010.Google Scholar

  • [12] S. Hesaraki, R. Nemati - Cephalexin-loaded injectable macroporous calcium phosphate bone cement, J Biomed Mater Res B Appl Biomater., 89:342–52, 2009.Google Scholar

  • [13] T. Sasaki, Y. Ishibashi, H. Katano, A. Nagumo, S. Toh - In vitro elution of vancomycin from calcium phosphate cement, J Arthroplasty, 20:1055–9, 2005.Google Scholar

  • [14] P. J. Jiang, S. Patel, U. Gbureck, R. Caley, L. M. Grover - Comparing the efficacy of three bioceramic matrices for the release of vancomycin hydrochloride. J Biomed Mater Res B Appl Biomater., 93:51–8, 2010.Google Scholar

  • [15] A. Sugawara, K. Asaoka, S. J. Ding - Calcium phosphate-based cements: clinical needs and recent progress, J Mater Chem B., 1:1081–9, 2013.Web of ScienceGoogle Scholar

  • [16] N. Cioffi et al. - Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem. Mater. 17:5255–62, 2005.CrossrefGoogle Scholar

  • [17] D. Avram, N. Angelescu, D. N. Ungureanu, V. Bratu - Obtaining simple and doped phosphocalcic glasses by using sol-gel technique, JOAM, Vol. 17, No. 7-8, p. 1038 – 1043, July – August 2015.Google Scholar

  • [18] D. Avram, D. N. Ungureanu, N. Angelescu, A. Gheboianu, I. Bancuţă, M. G. Bratu - Study of bioactivity and antimicrobial activity in case of glasses from SiO2 -CaO - P2O5 ternary system, The Scientific Bulletin of Valahia University – Materials and Mechanics – No. 10 (year 13), 2015.Google Scholar

  • [19] D. Avram, N. Angelescu, D. N. Ungureanu, I. Ioniţă, A. Gheboianu, I. Bancuţă - Study of phosphocalcic glasses SiO2 - CaO - P2O5 system with and without silver, part I. Synthesis of glasses and characterization by WD- XRF and XRD, Rev. Ch. Română, vol.68, nr. 5, mai 2017.Google Scholar

  • [20] D. Avram, N. Angelescu, D. N. Ungureanu, I. Ioniţă, A. Gheboianu, I. Bancuţă, E. M. Lungulescu - Study of phosphocalcic glasses SiO2 - CaO - P2O5 system with and without silver, part II. The bioactivity analysis by FTIR, SEM methods and microbiological study of silver-doped glasses, Rev. Ch. Română, vol.68, nr. 6, iunie 2017.Google Scholar

  • [21] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro - Solutions able to reproduce in vivo surfacestructure changes in bioactive glass-ceramic A-W, J. Biomed. Mater. Res., 24, p. 721-734, 1990.Google Scholar

  • [22] V. Prisacari, A. Paraschiv, C. Jucovschi - Evaluarea epidemiologică a factorilor de risc în infecţiile septico-purulente nosocomiale, Buletinul AŞM, Ştiinţe medicale, Nr 2, pag. 73-86, 2005.Google Scholar

  • [23] V. Prisacari, S. Stoleicov - Particularităţi epidemiologice şi etiologice în osteita posttraumatică,. Buletinul AŞM, Ştiinţe medicale, Nr 3(7), p. 261-270, 2006.Google Scholar

  • [24] A. Paraschiv - Pronosticarea apariţiei complicaţiilor septico-purulente. Sănătate publică, economie şi management în medicină, Nr 4, p. 45-48, 2005.Google Scholar

About the article

Published Online: 2017-11-28

Published in Print: 2017-10-01

Citation Information: Scientific Bulletin of Valahia University - Materials and Mechanics, Volume 15, Issue 13, Pages 18–24, ISSN (Online) 2537-3161, DOI: https://doi.org/10.1515/bsmm-2017-0013.

Export Citation

© 2017 Daniela Avram et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in