Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Bulletin of the Veterinary Institute in Pulawy

The Journal of National Veterinary Research Institute in Pulawy

4 Issues per year

IMPACT FACTOR 2016: 0.462

SCImago Journal Rank (SJR) 2016: 0.235
Source Normalized Impact per Paper (SNIP) 2016: 0.364

Open Access
See all formats and pricing
More options …

Identification of Diagnostic Protein Markers of Subclinical Mastitis in Bovine Whey Using Comparative Proteomics

Yanjie Bian / Ying Lv / Qingzhang Li
Published Online: 2014-10-01 | DOI: https://doi.org/10.2478/bvip-2014-0060


The proteomics of inflammatory response in whey from cows with subclinical mastitis were analysed. Whey protein lysates were separated on 24 cm dry IPG strips (pH 3-10 linear) and 24 cm dry IPG strips (pH 4-7) using two-dimensional electrophoresis. The results indicated that the whey proteins in milk from cows with subclinical mastitis are different from those in milk from healthy cows. All protein spots were found to have biologically relevant changes in relative abundance during subclinical mastitis using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry analysis, including ß-1,4 galactosyltransferase, ß-2 microglobulin, complement 3, a-1-acid glycoprotein, ß-lactoglobulin A, a-S1 casein precursor, ß-casein B, and serotransferrin precursor. The mRNA expression of these genes was verified by quantitative real-time PCR. These proteins are involved in signal transduction, binding, transport, and immune defence activity. The results suggest that the markers may be used for the diagnosis of subclinical mastitis.

Keywords: proteomic; subclinical mastitis; bovine whey; diagnostic markers


  • 1. Bannerman D.D., Chockalingam A., Paape M.J., Hope J.C.: The bovine innate immune response during experimentally-induced Pseudomonas aeruginosa mastitis. Vet Immunol Immunopathol 2005, 107, 201-215.Google Scholar

  • 2. Benoit L.A., Tan R.: Xenogeneic beta 2-microglobulin substitution affects functional binding of MHC class I molecules by CD8+ T cells. J Immunol 2007, 179, 3588-3595.Web of ScienceGoogle Scholar

  • 3. Bertram Y.F., Carmen S.N., Kate P.P.: Fractionation of bovine whey proteins and characterisation by proteomic techniques. Int Dairy J 2008, 18, 23-46.Web of ScienceGoogle Scholar

  • 4. Bian Y.J., Li Q.Z., Zhang L., Guo H.B., Lv Y.: Comparison of bovine whey protein preparation methods for two-dimensional gel electrophoresis analysis. Chinese J Biochem Mol Biol 2011, 27, 486-492.Google Scholar

  • 5. Boehmer J.L., Bannerman D.D., Shefcheck K., Ward J.L.: Proteomic analysis of differentially expressed proteins in bovine milk during experimentally induced Escherichia coli mastitis. J Dairy Sci 2008, 91, 4206-4218.Web of ScienceGoogle Scholar

  • 6. Boehmer J.L.: Proteomic analyses of host and pathogen responses during bovine mastitis. J Mammary Gland Biol Neoplasia 2011, 16, 323-338.CrossrefWeb of SciencePubMedGoogle Scholar

  • 7. Ceciliani F., Pocacqua V., Provasi E., Comunian C., Bertolini A., Bronzo V., Moroni P., Sartorelli P.: Identification of the bovine a1-acid glycoprotein in colostrum and milk. Vet Res 2005, 36, 735-746.PubMedGoogle Scholar

  • 8. Daley M.J., Oldham E.R., Williams T.J., Coyle P.A.: Quantitative, and qualitative properties of host polymorphonuclear cells during experimentally induced Staphylococcus aureus mastitis in cows. Am J Vet Res 1991, 52, 474-479.PubMedGoogle Scholar

  • 9. Dilda F., Pisani L.F., Rahman M.M., Modina S., Tessaro I., Sartorelli P., Ceciliani F., Lecchi C.: Distribution of acute phase proteins in the bovine forestomachs and abomasum. Vet J 2012, 192, 101 -105.Web of ScienceGoogle Scholar

  • 10. García-Vallejo J.J., van Dijk W., van Die I., Gringhuis S.I.: Tumor necrosis factor-alpha up-regulates the expression of beta1,4-galactosyltransferase I in primary human endothelial cells by mRNA stabilization. J Biol Chem 2005, 280, 12676-12682.Google Scholar

  • 11. Godden S., Rapnicki P., Stewart S., Fetrow J., Johnson A., Bey R., Farnsworth R.: Effectiveness of an internal teat seal in the prevention of new intramammary infections during the dry and early lactation periods in dairy cows when used with a dry cow intramammary antibiotic. J Dairy Sci 2003, 86, 3899-3911.Google Scholar

  • 12. Hathaway H.J.: Cell surface beta1,4-galactosyltransferase function in mammary gland morphogenesis: insights from transgenic and knockout mouse models. J Mammary Gland Biol Neopl 2003, 8, 421-33.Google Scholar

  • 13. Hirvonen J., Eklund K., Teppo A.M., Huszenicza U., Kulcsar M., Saloniemi H., Pyörhlb S.: Acute phase response in dairy cows with experimentally induced Eschericlua coli mastitis. Acta Vet Scand 1999, 40, 35-46.Google Scholar

  • 14. Hogarth C.J., Fitzpatrick J.L., Nolan A.M., Young F.J., Pitt A., Eckersall P.D.: Differential protein composition of bovine whey: a comparison of whey from healthy animals and from those with clinical mastitis. Proteomics 2004, 4, 2094-2100.CrossrefGoogle Scholar

  • 15. Huang J.G., Gao X.J., Li, Q.Z., Lu L.M., Liu R., Luo C.C., Wang J.L., Qiao B., Jin X.: Proteomic analysis of the nuclear phosphorylated proteins in diary cow mammary epithelial cells treated with estrogen. In Vitro Cell Dev Biol Anim 2012, 48, 449-457.Web of ScienceCrossrefGoogle Scholar

  • 16. Ikizler T.A., Wingard R.L., Harvell J.: Association of morbidity with markers of nutrition and inflammation in chronic hemodialysis patients: a prospective study. Kidney Int 1999, 55, 1945-1951.Google Scholar

  • 17. Isenberg H.D.: Essential Procedures for Clinical Microbiology. American Society for Microbiology Press. Washington, DC, 1998.Google Scholar

  • 18. Kim Y., Atalla H., Mallard B., Robert C., Karrow N.: Changes in Holstein cow milk and serum proteins during intramammary infection with three different strains of Staphylococcus aureus. BMC Vet Res 2011, 7, 51.Web of ScienceCrossrefGoogle Scholar

  • 19. Klingel K., Schnorr J.J., Sauter M., Szalay G., Kandolf R.: Beta 2-microglobulin associated regulation of interferon-gamma and virus-specific immunoglobulin G confer resistance against the development of chronic coxsackievirus myocarditis. Am J Pathol 2003, 162, 1709-1720.Google Scholar

  • 20. Mishra P.K., Tyagi N., Kundu S., Tyagi S.C.: MicroRNAs are involved in homocysteine-induced in homocysteine-induced cardiac remodeling. Cell Biochem Biophys 2009, 55, 153-162.Web of ScienceGoogle Scholar

  • 21. Niu S.Q., Fei M., Cheng C., Yan M.J., Gao S.F., Chen M.L., Wang H.B., Li X., Yu X.W., Qian J., Qin, J., Zhao J., Gu J.X., Shen A.G.: Altered beta-1,4-galactosyltransferase I expression during early inflammation after spinal cord contusion injury. J Chem Neuroanat 2008, 35, 245-256.Web of ScienceGoogle Scholar

  • 22. Omore A.O., McDermott J.J., Arimi S.M., Kyule M.N., Ouma D.: A longitudinal study of milk somatic cell counts and bacterial culture from cows on smallholder dairy farms in Kiambu district, Kenya. Prev Vet Med 1996, 29, 77-89.CrossrefGoogle Scholar

  • 23. Qasba P.K., Ramakrishnan B., Boeggeman E.: Substrate-induced conformational changes in glycosyltransferases. Trends Biochem Sci 2005, 30, 53-62.CrossrefGoogle Scholar

  • 24. Qian J., Cheng C., Liu H., Chen J., Yan M., Niu S., Qin J., Sun L., Liu L., Gu J., Shen A.: Expression of beta-1,4-galactosyltransferase-I in rat during inflammation. Inflammation 2007, 30, 59-68.Google Scholar

  • 25. Quinn P.J., Carter M.E., Markey B., Carter G.R.: Clinical Veterinary Microbiology. Mosby, London, 1994.Google Scholar

  • 26. Rainard P., Riollet C.: Innate immunity of the bovine mammary gland. Vet Res 2006, 37, 369-400.CrossrefPubMedGoogle Scholar

  • 27. Romana T., Cristian P.: Proteomics of inflammatory and oxidative stress response in cows with subclinical and clinical mastitis. J Proteom 2012, 75, 4412-4428.Google Scholar

  • 28. Santos J.E., Cerri R.L., Ballous M.A., Higginbotham G.E., Kirk J.H.: Effect of timing of first clinical mastitis occurrence on lactational and reproductive performance of Holstein dairy cows. Anim Reprod Sci 2004, 80, 31-45.PubMedCrossrefGoogle Scholar

  • 29. Shur B.D., Evans S., Lu Q.: Cell surface galactosyltransferase: current issues. Glycoconjugate J 1998, 15, 537-548.CrossrefGoogle Scholar

  • 30. Sordillo L.M., Shafer-Weaver K., DeRosa D.: Immunobiology of the mammary gland. J Dairy Sci 1997, 80, 1851-1865.Google Scholar

  • 31. Van L.B.J., Hama S.Y., de Beer F.C., Stafforini D.M., McIntyre T.M, Prescott S.M: Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures. J Clin Invest 1995, 96, 2758-2767.Google Scholar

  • 32. Wang D., Wang N., Li N., Li H.: Identification of differentially expressed proteins in adipose tissue of divergently selected broilers. Poult Sci 2009, 88, 2285-2292.Web of ScienceGoogle Scholar

  • 33. Zarkadis I.K., Mastellos D., Lambris J.D.: Phylogenetic aspects of the complement system. Dev Comp Immunol 2001, 25, 745-762.CrossrefGoogle Scholar

About the article

Received: 2014-12-29

Accepted: 2014-08-05

Published Online: 2014-10-01

Citation Information: Bulletin of the Veterinary Institute in Pulawy, Volume 58, Issue 3, Pages 385–392, ISSN (Online) 2300-3235, DOI: https://doi.org/10.2478/bvip-2014-0060.

Export Citation

© 2014 National Veterinary Research Institute in Pulawy. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in