Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cybernetics and Information Technologies

The Journal of Institute of Information and Communication Technologies of Bulgarian Academy of Sciences

4 Issues per year

CiteScore 2016: 0.60

SCImago Journal Rank (SJR) 2016: 0.203
Source Normalized Impact per Paper (SNIP) 2016: 0.546

Mathematical Citation Quotient (MCQ) 2016: 0.01

Open Access
See all formats and pricing
More options …
Volume 17, Issue 2 (Jun 2017)


Level Based Routing Using Dynamic Programming for 2D Mesh

Akash Punhani / Pardeep Kumar / Nitin Nitin
Published Online: 2017-06-26 | DOI: https://doi.org/10.1515/cait-2017-0017


The performance of the interconnection network doesn’t only depend on the topology, but it also depends on the Routing algorithm used. The simplest Routing algorithm for the mesh topology in networks on chip is the XY Routing algorithm. The level based Routing algorithm has been proved to be more efficient than the XY Routing algorithm. In this paper, level based Routing algorithm using the dynamic programming has been proposed. The proposed Routing algorithm proves to be more efficient in the terms of the computation. The proposed Routing algorithm has achieved up to two times bigger speed.

Keywords: Dynamic programming; Routing algorithm; Mesh topology; Time complexity; Space complexity


  • 1. Dally, W. J., B. Towels. Principle and Practices of Interconnection Networks. Elsevier, 2004.Google Scholar

  • 2. Duato, J., S. Yalamanchili, L. Ni. Interconnection Networks. Elsevier, 2003.Google Scholar

  • 3. Palesi, M., M. Daneshtalab. Routing Algorithms in Networks-on-Chip. Berlin, Springer, 2014.Google Scholar

  • 4. Bhardwaj, V. P., R. V. Nitin. On the Minimization of Crosstalk Conflicts in a Destination Based Modified Omega Network. – Journal of Information Processing Systems, Vol. 9, 2013, No 3, pp. 301-314.Google Scholar

  • 5. Nitin, R. V., U. Srivastava. On a Deadlock and Performance Analysis of ALBR and DAR Algorithm on X-Torus Topology by Optimal Utilization of Cross Links and Minimal Lookups. – Journal of Supercomputing, Vol. 59, 2010, No 3, pp. 1252-1288.Web of ScienceCrossrefGoogle Scholar

  • 6. Nitin, R. V., D. S. Chauhan. Stochastic Communication for Application Specific Networks-on-Chip. – Journal of Supercomputing, Vol. 59, 2010, No 2, pp. 779-810.Web of ScienceCrossrefGoogle Scholar

  • 7. Nitin, R. V., S. Garhwal, N. Srivastava. Designing a Fault-Tolerant Fully-Chained Combining Switches Multi-Stage Interconnection Network with Disjoint Paths. – Journal of Supercomputing, Vol. 55, 2009, No 3, pp. 400-431.CrossrefWeb of ScienceGoogle Scholar

  • 8. Yu-Hang, L., Z. Ming Fa, W. Jue, Li-Min Xiao, G. Tao. X-Torus: An Extended Torus Topology for On-Chip Massive Data Communication. – In: Proc. of 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW’12), 2012, pp. 2061-2068.Google Scholar

  • 9. Hu, W. H., S. E. Lee, N. Bagherzadeh, Z. Xiao-Jing, H. Wei-Wu, M. Ke, Z. Long-Bing. X-Mesh: A Mesh-Like Topology for Network on Chip. – Network. Chip Architecture, 2008, p. 14.Google Scholar

  • 10. Wang, Y., H. Du, X. Shen. Topological Properties and Routing Algorithm for Semi-Diagonal Torus Networks. – J. China Univ. Posts Telecommunication, Vol. 18, 2011, No 5, pp. 64-70.Google Scholar

  • 11. Arora, L. K., Rajkumar. C2-Mesh. – In: Proc. of 3rd IEEE International Advance Computing Conference (IACC’13), 2013, pp. 282-286.Google Scholar

  • 12. Yadav, S., C. R. Krishna. CC-Torus: A New Torus Topology for Interconnection Networks. – In: Proc. of International Conference on Advanced Computational Technologies & Creative Media (ICACTCM’14), 2014, pp. 14-15.Google Scholar

  • 13. Manish, Bhardwaj. C2-Torus New Interconnection Network Topology Based on 2D Torus, American. – Journal of Network Communication, Vol. 4, 2015, No 3, pp. 1-4.Google Scholar

  • 14. Punhani, C. A., R. V. Nitin, P. Kumar. A Modified Diagonal Mesh Interconnection Network. – In: Annual IEEE India Conference (INDICON’14), 2014, pp. 1-6.Google Scholar

  • 15. Punhani, C. A., P. Kumar, R. V. Nitin. Diagonal Connected T-Mesh. – Indian Journal of Science and Technology, Vol. 9, 2016, No 32.Google Scholar

  • 16. Punhani, C. A., R. V. Nitin. EMC2-Mesh. – In: Annual IEEE Conference (INDICON’15), India, 2015, pp. 1-5.Google Scholar

  • 17. Nitin, R. V., D. S. Chauhan. Comparative Analysis of Traffic Patterns on k-Ary n-Tree Using Adaptive Algorithms Based on Burton Normal Form. – Journal of Supercomputing, Vol. 59, 2010, No 2, pp. 569-588.CrossrefGoogle Scholar

  • 18. Mejia, M. Palesi, J. Flich, S. Kumar, P. Lopez, R. Holsmark, J. Duato. Region-Based Routing: A Mechanism to Support Efficient Routing Algorithms in NoCs. – IEEE Trans. Very Large Scale Integration of Systems, Vol. 17, 2009, No 3, pp. 356-369.Google Scholar

  • 19. Chiu, G. M. The Odd-Even Turn Model for Adaptive Routing. – IEEE Trans. Parallel Distributed Systems, Vol. 11, 2000, No 7, pp. 729-738.Google Scholar

  • 20. Glass, J., L. M. Ni. The Turn Model for Adaptive Routing. – In: Proc of 19th Annual International Symposium on Computer Architecture, 1992, pp. 278-287.Google Scholar

  • 21. Arora, L. K., R. Kumar. Alternatives of XY-Routing for Mesh. – In: Special Issue of International Journal of Computer Application ICNICT, 2012, pp. 6-8.Google Scholar

About the article

Published Online: 2017-06-26

Published in Print: 2017-06-01

Citation Information: Cybernetics and Information Technologies, ISSN (Online) 1314-4081, DOI: https://doi.org/10.1515/cait-2017-0017.

Export Citation

© 2017 Akash Punhani et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in