Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Change and Adaptation in Socio-Ecological Systems

Climate Change, Social Changes, Technological Development

Ed. by Inostroza, Luis / Fürst, Christine

Open Access
See all formats and pricing
More options …

Shades of Greening: Reviewing the Impact of the new EU Agricultural Policy on Ecosystem Services

Jennifer Hauck
  • Corresponding author
  • Helmholtz-Centre for Environmental Research – UFZ, Department of Environmental Politics, Permoserstr. 15, 04318 Leipzig, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christian Schleyer
  • Helmholtz-Centre for Environmental Research – UFZ, Department of Environmental Politics, Permoserstr. 15, 04318 Leipzig, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Klara J. Winkler
  • Helmholtz-Centre for Environmental Research – UFZ, Department of Environmental Politics, Permoserstr. 15, 04318 Leipzig, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joachim Maes
  • European Commission - Joint Research Centre, European Commission, Joint Research Centre, Institute for Environment and Sustainability, Via E. Fermi, 2749, I-21027 Ispra (VA), Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-10-28 | DOI: https://doi.org/10.2478/cass-2014-0006


In December 2013, the EU Agriculture and Fisheries Council formally adopted the new regulations for the reformed Common Agricultural Policy (2014-2020). The new regulations include three obligatory greening measures: ecological focus areas, maintaining permanent grassland, and crop diversification. We assess the impact of these measures on ecosystem services using scientific and gray literature. The literature review reveals that the adopted greening measures will have mixed effects, i.e., trade-offs and synergies across ecosystems services. Provisioning services, in particular crop production, are expected to decrease when the measures are implemented. All other service categories, i.e., regulating and cultural services, will increase – or are at least will not obviously be negatively affected – once the measures are implemented. However, in terms of tradeoffs and synergies, much depends on objectives being pursued, the baseline or alternative land use underlying the comparison, and on the prevalent farming systems and farm characteristics. Including the ecosystem services concept into the design and assessment of policies would allow a systematic review of the consequences of measures also for services otherwise easily ignored.

Keywords : CAP, Greening; Environmental Services; Impact Assessment; Preferences; Ecological Focus Areas; Maintaining Permanent Grassland, Crop Diversification


  • [1] Cooper T., Hart K., Baldock D., Provision of public goods through agriculture in the European Union - Report prepared for DG agriculture and rural development, Institute for European Environmental Policy, London, 2009. Google Scholar

  • [2] Schomers S., Matzdorf B., Payments for ecosystem services - A review and comparison of developing and industrialized countries, Ecosyst. Serv., 6, 16-30. Google Scholar

  • [3] Allen B. Hart K., Meeting the EU’s environmental challenges through the CAP – how do the reforms measure up?, 2013, Asp. App. Biol., 118, 9-22. Google Scholar

  • [4] Uthes S., Matzdorf B., Mueller K., Kaechele H., Spatial targeting of agri- environmental measures - cost-effectiveness and distributional consequences, Environ. Manage., 2010, 46, 494–509. CrossrefGoogle Scholar

  • [5] Von Haaren C., Bathke M., Integrated landscape planning and remuneration of agri-environmental services - results of a case study in the Fuhrberg region of Germany, J. Environ. Manage., 2008, 89, 209–221. CrossrefGoogle Scholar

  • [6] Lehmann P., Schleyer C., Wätzold F., Wüstemann H., Promoting Multifunctionality of Agriculture: An Economic Analysis of New Approaches in Germany, J. Environ. Policy Planning, 2009, 11, 315-332. CrossrefGoogle Scholar

  • [7] Jongeneel R., Brand, H., Direct income support and crosscompliance. In: Oskam, A.J., Meester, G., Silvin, H., (eds.), EU policy for agriculture, food and rural areas, Wageningen, Wageningen Academic Press, 2010, 191-205. Google Scholar

  • [8] European Commission, CAP Reform – an explanation of the main elements European Commission, European Commission, MEMO/13/937, 2013. Google Scholar

  • [9] European Parliament, Environmental Public Goods in the New CAP: Impact of Greening Proposals and possible Alternatives. European Parliament, Note prepared by Alan Matthews, P/B/ AGRI/CEI/2011-097/E001/SC1, 2012. Google Scholar

  • [10] European Parliament, Direct Payments in the CAP Post 2013. European Parliament, Note prepared by Stefan Tangermann, P/B/AGRI/IC/2011_003, 2011. Google Scholar

  • [11] BirdLife Europe, The final CAP deal is little more than greenwash, Press statement 26/06/2013, http://www.birdlife. org/europe/pdfs/20130626PR_CAPdeal.pdf Google Scholar

  • [12] Maes J., Braat L., Jax K., Hutchins M., Furman E., Termansen M., et al., A spatial assessment of ecosystem services in Europe - methods, case studies and policy analysis - phase 1, In: PEER Report, No. 3, Partnership for European Environmental Research, Ispra, 2011. Google Scholar

  • [13] Schindler S., Sebesvari Z., Damm C., Euller K., Mauerhofer V., Schneidergruber A., et al., Multifunctionality of floodplain landscapes: relating management options to ecosystem services, Landsc. Ecol., 2014, 29, 229-244. CrossrefGoogle Scholar

  • [14] Dicks L.V., Hodge I., Randall N.P., Scharlemann J.P.W., Siriwardena G.M., Smith H.G, et al., A transparent process for “evidenceinformed” policy making, Conserv. Biol., 2014, 7, 119-125. Google Scholar

  • [15] MA (Millennium Ecosystem Assessment), Ecosystems and human well-being – synthesis, Island Press, Washington DC., 2005. Google Scholar

  • [16] Plieninger T., Schleyer C., Schaich H., Ohnesorge B., Gerdes H., Hernández-Morcillo M., et al., Mainstreaming Ecosystem Services through reformed European Agricultural Policies, Conservation Letters, 2012, 5, 281-188. Google Scholar

  • [17] Hauck J., Schweppe-Kraft B., Albert C., Görg C., Jax K., Jensen R., et al., The promise of the ecosystem services concept for planning and decision-making, GAIA, 2013, 22, 232–236. Google Scholar

  • [18] Mikki S., Google Scholar compared to Web of Science - a literature review, Nordic Journal of Information Literacy in Higher Education, 2009, 1, 41-51. Google Scholar

  • [19] European Environment Agency, Green infrastructure and territorial cohesion - The concept of green infrastructure and its integration into policies using monitoring systems, EEA Technical Report, European Environment Agency, Copenhagen, 2011. Google Scholar

  • [20] Hart K., Baldock D., Greening the CAP - Delivering Environment Outcomes through Pillar One, Institute for European Environmental Policy, London, 2011. Google Scholar

  • [21] Sukhdev P., Wittmer H., Schröter-Schlaack C., Nesshöver C., Bishop J., ten Brink P., et al., The Economics of Ecosystems and Biodiversity (TEEB), Mainstreaming the economics of nature: A synthesis of the approach, conclusions and recommendations of TEEB, TEEB, 2010, http://www.teebweb.org/publication/ mainstreaming-the-economics-of-nature-a-synthesis-of-theapproach- conclusions-and-recommendations-of-teeb/ Google Scholar

  • [22] Institute for European Environmental Policy (IEEP), The Environmental Benefits of Set-Aside in the EU - A summary of evidence, Institute for European Environmental Policy, Report to DEFRA, 2008, http://archive.defra.gov.uk/evidence/statistics/ foodfarm/enviro/observatory/setaside/documents/ieepfeb08. pdf Google Scholar

  • [23] Vannini L., Gentile E., Bruni M., Loi A., Aragrande M., Theuvsen L., et al., Evaluation of the Set Aside Measure 2000 to 2006, Final Report, May 2008, http://ec.europa.eu/agriculture/eval/ reports/setaside/fulltext_en.pdf Google Scholar

  • [24] Silcock P., Lovegrove C., Retaining the environmental benefits of set-aside - A policy options paper, The Land Use Policy Group, Peterborough, 2007, http://www.lupg.org.uk/pdf/ pubs_Retainingenvbenefitsofsetaside07.pdf Google Scholar

  • [25] De Schutter L., Giljum S., A calculation of the EU Bioenergy land footprint, 2004. Google Scholar

  • [26] Berndes G., Bioenergy and water - The implications of large-scale bioenergy production for water use and supply, Glob. Environ. Chang., 2002, 12, 253-271. CrossrefGoogle Scholar

  • [27] Robertson P.G., Dale V.H., Doering O.C., Hamburg S.P., Melillo J.M., Wander M.M., et al., Sustainable biofuels redux, Science, 2008, 322, 49-50. Google Scholar

  • [28] Kersebaum K.C., Steid l.J., Bauer O., Piorr H.P., Modelling scenarios to assess the effects of different agricultural management and land use options to reduce diffuse nitrogen pollution into the river Elbe Methodology, Phys. Chem Earth, 2003, 28, 537-545. CrossrefGoogle Scholar

  • [29] Froment M.A., Chalmers A.G., Collins C., Grylls J.P., Rotational set-aside - influence of vegetation and management for one-year plant covers on soil mineral nitrogen during and after set-aside at five sites in England, J Agric Sci, 1999, 133, 1-19. Google Scholar

  • [30] Tonitto C., David M.B., Drinkwater L.E., Replacing bare fallows with cover crops in fertilizer-intensive cropping systems - A meta-analysis of crop yield and N dynamics, Agric. Ecosyst. Environ., 2006, 112, 58-72. CrossrefGoogle Scholar

  • [31] Laurent F., Ruelland D., Assessing impacts of alternative land use and agricultural practices on nitrate pollution at the catchment scale, J. Hydrol., 2011, 409, 440-450. Google Scholar

  • [32] Dadkhah M., Gifford G., Influence of vegetation, rock cover, and trampling on infiltration rates and sediment production, J.Am. Water Resour. Assoc., 1980, 16, 979-986. CrossrefGoogle Scholar

  • [33] Van Rompaey A.J.J., Govers G., Van Hecke E., Jacobs K., The impacts of land use policy on the soil erosion risk: a case study in central Belgium, Agric. Ecosyst. Environ., 2001, 1, 83-94. CrossrefGoogle Scholar

  • [34] Oréade-Brèche, Evaluation de l’impact des mesures communautaires concernant le gel des terres, Oreade-Breche, Auzeville, 2002, (in French). Google Scholar

  • [35] Bonan G., Ecological Climatology, Cambridge University Press, Cambridge, 2002. Google Scholar

  • [36] Benjamin F.E., Reilly J.R., Winfree R., Pollinator body size mediates the scale at which land use drives crop pollination services, J. Appl. Ecol., 51, 440-449. Google Scholar

  • [37] Decourtye A., Mader E., Desneux N., Landscape enhancement of floral resources for honey bees in agro-ecosystems, Apidologie, 2010, 41, 264-277. CrossrefGoogle Scholar

  • [38] Lonsdorf E., Kremen C., Ricketts T., Winfree R., Williams N., Greenleaf S., Modelling pollination services across agricultural landscapes, Ann. Bot., 2009, 103, 1589-1600. Google Scholar

  • [39] Liu, Y.L., Chang, K.-T., Stoorvogel, J., Verburg, P., Sun, C.H., Evaluation of agricultural ecosystem services in fallowing land based on farmers’ participation and model simulation, Paddy Water Environ., 2012, 10, 301-310. Google Scholar

  • [40] Paar P., Röhricht W., Schuler J., Towards a planning support system for environmental management and agri-environmental measures – the Colorfields study, J. Environ. Manage., 2008, 89, 234-244. CrossrefGoogle Scholar

  • [41] Marshall E.J.P., Moonen A.C., Field margins in northern Europe - their functions and interactions with agriculture, Agric. Ecosyst. Environ., 2002, 89, 5-21. CrossrefGoogle Scholar

  • [42] Kumar S., Agroforestry and grass buffers for improving soil hydraulic properties and reducing runoff and sediment losses from grazed pastures, Dissertation Presented to the Faculty of the Graduate School University of Missouri-Columbia, Columbia/Missouri , 2009. Google Scholar

  • [43] Udawatta R.P., Kremer R.J., Adamson B.W., Anderson S.H., Variations in soil aggregate stability and enzyme activities in a temperate agroforestry practice, Appl. Soil Ecol., 2008, 39, 153-160. CrossrefGoogle Scholar

  • [44] Gopalakrishnan G., Negri M.C., Wang M., Wu M., Snyder S.W., LaFreniere L., Biofuels, Land, and Water - A Systems Approach to Sustainability, Environ. Sci. Technol., 2009, 43, 6094–6100. CrossrefGoogle Scholar

  • [45] McCracken D. I., Cole L.J., Harrison W., Robertson D., Improving the Farmland Biodiversity Value of Riparian Buffer Strips - Conflicts and Compromises, J. Environ. Qual., 2012, 41, 355-363. CrossrefGoogle Scholar

  • [46] Stutter M.I., Chardon W.J., Kronvang B., Riparian Buffer Strips as a Multifunctional Management Tool in Agricultural Landscapes - Introduction, J. Environ. Qual., 2012, 41, 297-303. CrossrefGoogle Scholar

  • [47] Lovell S.T., Sullivan W.C., Environmental benefits of conservation buffers in the United States - Evidence, promise, and open questions, Agric. Ecosyst. Environ., 2006, 112, 249-260. CrossrefGoogle Scholar

  • [48] European Commission, A Blueprint to Safeguard Europe’s Water Resources, European Commission, COM/2012/0673 final, 2012. Google Scholar

  • [49] Brauman K.A., van der Meulen S., Brils J., Ecosystem services and river basin management, In: Brils J., Brack W., Müller- Grabherr D., Négrel P., Vermaat J.E. (Eds.), Risk-Informed Management of European Basins, Springer, Berlin Heidelberg, 2014. Google Scholar

  • [50] Borin M., Passoni M., Thiene M., Tempesta T., Multiple functions of buffer strips in farming areas, Eur. J. Agron., 2010, 32, 130-111. Google Scholar

  • [51] Tilman D., Cassman K.G., Matson P.A., Naylor R., Polasky S., Agricultural sustainability and intensive production practices, Nature, 2002, 418, 671-677. Google Scholar

  • [52] Loomis .J, Kent P., Strange L., Fausch K., Covich A., Measuring the total economic value of restoring ecosystem services in an impaired river basin - results from a contingent valuation survey, Ecol. Econ., 2000, 33, 103-117. CrossrefGoogle Scholar

  • [53] Patty L., Réal B., Gril J.J., The use of grassed buffer strips to remove pesticides, nitrate and soluble phosphorus compounds from runoff water, Pestic. Sci., 1997, 49, 243-251. CrossrefGoogle Scholar

  • [54] Franzluebbers A.J., Sawchik J., Taboada M.A., Agronomic and environmental impacts of pasture-crop rotations in temperate North and South America, Agric. Ecosyst. Environ., 2014, 190, 18-26. Google Scholar

  • [55] Posthumus H., Deeks L.K., Rickson R.J., Quinton J.N., Costs and benefits of erosion control measures in the UK,Soil Use Manag., 2013, doi: 10.1111/sum.12057 CrossrefGoogle Scholar

  • [56] Rickson R.J., Can control of soil erosion mitigate water pollution by sediments?, Sci. Total Environ., 2014, 468, 1187-1197. Google Scholar

  • [57] Morschel J., Fox D.M., Bruno J.F., Limiting sediment deposition on roadways - topographic controls on vulnerable roads and cost analysis of planting grass buffer strips, Environ. Sci. Policy, 2004, 7, 39-45. CrossrefGoogle Scholar

  • [58] Silva J.P., Toland J., Jones W., Eldridge J., Thorpe E., O’Hara E., LIFE and Europe’s Grasslands - Restoring a Forgotten Habitat, LIFE Focus series, Office for Official Publications of the European Communities, Luxembourg, 2008. Google Scholar

  • [59] Bullock J.M., Jefferson R.G., Blackstock T.H., Pakeman R.J., Emmett B.A., Pywell R.J., et al., Semi-natural grasslands, In: Technical Report (Ed.), The UK National Ecosystem Assessment, UNEP/WCMC, Cambridge, 2011, 162-195. Google Scholar

  • [60] Lemaire G., Franzluebbers A., de Faccio Carvalho P.C., Dedieu B., Integrated crop-livestock systems: strategies to achieve synergy between agricultural production and environmental quality, Agric. Ecosyst. Environ., 2014, 190, 4-8. Google Scholar

  • [61] Dong X.B., Yu B.H., Brown M.T., Zhang Y.S., Kang M.Y., Jin Y., et al., Environmental and economic consequences of the overexploitation of natural capital and ecosystem services in Xilinguole League, China, Energy Policy, 2014, 67, 767-780. CrossrefGoogle Scholar

  • [62] Tilman D., Hill J., Lehman C., Carbon-negative biofuels from low-input high-diversity grassland biomass, Science, 2006, 314, 1598-1600. Google Scholar

  • [63] Conant R.T., Paustian K., Elliott E.T., Grassland management and conversion into grassland - Effects on soil carbon, Ecol. Appl., 2001, 11, 343-355. CrossrefGoogle Scholar

  • [64] Soussana J.F., Tallec T., Blanfort V., Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands, Animal, 2010, 4, 334-350. CrossrefGoogle Scholar

  • [65] Weatherhead E.K., Howden N.J.K., The relationship between land use and surface water resources in the UK, Land Use Policy, 2009, 26, 243-250. Google Scholar

  • [66] Rode M., Thiel E., Franko U., Wenk G., Hesser F., Impact of selected agricultural management options on the reduction of nitrogen loads in three representative meso scale catchments in Central Germany, Sci. Total Environ., 2009, 407, 3459-3472. Google Scholar

  • [67] Jarvie H.P., Withers P.J.A., Bowes M.J., Palmer-Felgate E.J., Harper D.M., Wasiak K., et al., Streamwater phosphorus and nitrogen across a gradient in rural-agricultural land use intensity, Agri. Ecosyst. Environ., 2010, 135, 238–252. Google Scholar

  • [68] Galloway J.N., Aber J.D., Erisman J.W., Seitzinger S.P., Howarth R.W., Cowling E.B., et al., The Nitrogen Cascade, BioScience, 2003, 53, 341–356. CrossrefGoogle Scholar

  • [69] Pilgrim E.S., Macleod C. J.A., Blackwell M.S.A., Bol R., Hogan D.V., Chadwick D.R., et al., Interactions among Agricultural Production and Other Ecosystem Services Delivered from European Temperate Grassland Systems, Adv. Agron., 2010, 109, 117-154. Google Scholar

  • [70] Panagos P., Karydas C., Ballabio C., Gitas I., Seasonal monitoring of soil erosion at regional scale: An application of the G2 model in Crete focusing on agricultural land uses, Int. J. Appl. Earth Obs. Geoinf., 2014, 27, 147-155. CrossrefGoogle Scholar

  • [71] Peyraud J.-M., Taboada M., Delaby L., Integrated crop and livestock systems in Western Europe and South America: A review, Eur. J. Agron., 2014, 57, 31-42. CrossrefGoogle Scholar

  • [72] Öckinger E., Smith H.G., Semi-natural grasslands as population sources for pollinating insects in agricultural landscapes, J. Appl. Ecol., 2007, 44, 50-59. Google Scholar

  • [73] Jauker F., Diekotter T., Schwarzbach F., Wolters V., Pollinator dispersal in an agricultural matrix -opposing responses of wild bees and hoverflies to landscape structure and distance from main habitat, Landsc. Ecol., 2009, 24, 547-555. CrossrefGoogle Scholar

  • [74] Potts S.G., Woodcock B.A., Roberts S.P.M., Tscheulin T., Pilgrim E.S., Brown V.K., et al., Enhancing pollinator biodiversity in intensive grasslands, J. Appl. Ecol., 2009, 46, 369-379. CrossrefGoogle Scholar

  • [75] Hönigová I., Vačkář D., Lorencová E., Melichar J., Götzl M., Sonderegger G., et. al, Survey on grassland ecosystem services - Report to the EEA – European Topic Centre on Biological Diversity, Nature Conservation Agency of the Czech Republic, Prague, 2012. Google Scholar

  • [76] Power AG, Ecosystem services and agriculture - tradeoffs and synergies, Philosophical Transactions of the Royal Society, 2011, B 365, 2959-2971. Google Scholar

  • [77] European Commission, Greening - Results of partial analysis on impact on farm income using FADN, Annex 2D, Impact assessment - Common Agricultural Policy towards 2020, Staff Working Paper, Brussels, 2011. Google Scholar

  • [78] Boehmel C., Lewandowski I., Claupein W., Comparing annual and perennial energy cropping systems with different management intensities, Agric. Syst., 2008, 96, 224-236. CrossrefGoogle Scholar

  • [79] West T.O., Post W.M., Soil organic carbon sequestration rates by tillage and crop rotation - a global data analysis, Soil Sci. Soc. Am. J., 2002, 66, 1930-1946. CrossrefGoogle Scholar

  • [80] Hansen B., Kristensen E.S., Grant R., Høgh-Jensen H., Simmelsgaard S.E., Olesen J.E., Nitrogen leaching from conventional versus organic farming systems — a systems modelling approach, Eur. J. Agron., 2000, 13, 65-82. CrossrefGoogle Scholar

  • [81] Hajjar R., Jarvis D. I., Gemmill-Herren B., The utility of crop genetic diversity in maintaining ecosystem services, Agric. Ecosyst. Environ., 2008, 123, 261-270. Google Scholar

  • [82] Smith R.G., Gross K.L., Robertson G.P., Effects of crop diversity on agroecosystem function - Crop yield response, Ecosystems, 2008, 11, 355-366. CrossrefGoogle Scholar

  • [83] Lin B.B., Resilience in Agriculture through Crop Diversification - Adaptive Management for Environmental Change, BioScience, 2011, 61, 183-193. CrossrefGoogle Scholar

  • [84] Letourneau D.K., Armbrecht I., Rivera B.S., Lerma J.M., Carmona E.J., Daza M.C., et al., Does plant diversity benefit agroecosystems? - A synthetic review, Ecol. Appl., 2011, 21, 9-21. CrossrefGoogle Scholar

  • [85] Tscharntke T., Klein A.M., Kruess A., Steffan-Dewenter I., Thies C., Landscape perspectives on agricultural intensification and biodiversity - ecosystem service management, Ecol. Lett., 2005, 8, 857-874. CrossrefGoogle Scholar

  • [86] Breeze T.D., Vaissière B.E., Bommarco R., Petanidou T., Seraphides N., Kozák L., et al., Aggricultural policies exacerbate honeybee pollination service supply-demand mismatches across Europe, PloS one, 2014, 9, e82996. Google Scholar

  • [87] Mattsson B., Cederberg C., Blix L., Agricultural Land Use in Life Cycle Assessment (LCA) - Case Studies of Three Vegetable Crops. J. Cleaner Production, 2000, 8, 283-292. Google Scholar

  • [88] Baldock D., Beaufoy G., Plough on: An environmental appraisal of the reformed CAP, World Wide Fund for Nature, London, 1992. Google Scholar

  • [89] Prager K., Reed M., Scott A.J., Encouraging collaboration for the provision of ecosystem services at a landscape scale - rethinking agri-environmental payments, Land Use Policy, 2011, 29, 244-249. Google Scholar

  • [90] Forstner B., Deblitz C., Kleinhanß W., Nieberg H., Offermann F., Röder N., et al., Analyse der Vorschläge der EU-Kommission vom 12. Oktober 2011 zur künftigen Gestaltung der Direktzahlungen im Rahmen der GAP nach 2013. Arbeitsberichte aus der vTI-Agrarökonomie, 2012, 4/12. Google Scholar

  • [91] Eggers, J., Laschewski, L., Schleyer, C.,, Agri-Environmental Policy: Understanding the Role of Regional Administration, Institutional Change in Agriculture and Natural Resources (ICAR) Discussion Paper 4/2004, 2004. Google Scholar

About the article

Received: 2014-01-10

Accepted: 2014-06-25

Published Online: 2014-10-28

Citation Information: Change and Adaptation in Socio-Ecological Systems, Volume 1, Issue 1, ISSN (Online) 2300-3669, DOI: https://doi.org/10.2478/cass-2014-0006.

Export Citation

© 2014 Jennifer Hauck et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Lena K. Hornung, Simone A. Podschun, and Martin Pusch
Ecosystems and People, 2019, Volume 15, Number 1, Page 214
Jarmila Lazíková, Anna Bandlerová, Ľubica Rumanovská, Ivan Takáč, and Zuzana Lazíková
Sustainability, 2019, Volume 11, Number 5, Page 1416
Stanislav Zekić, Žana Kleut, Bojan Matkovski, and Danilo Đokić
Outlook on Agriculture, 2018, Page 003072701876801
Regina Lindborg, Line J. Gordon, Rebecka Malinga, Jan Bengtsson, Garry Peterson, Riccardo Bommarco, Lisa Deutsch, Åsa Gren, Maj Rundlöf, and Henrik G. Smith
Ecosphere, 2017, Volume 8, Number 4, Page e01741
Stefanie Engel and Adrian Muller
Agricultural Economics, 2016, Volume 47, Number S1, Page 173
Ian Hodge, Jennifer Hauck, and Aletta Bonn
Conservation Biology, 2015, Volume 29, Number 4, Page 996

Comments (0)

Please log in or register to comment.
Log in