Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Change and Adaptation in Socio-Ecological Systems

Climate Change, Social Changes, Technological Development

Ed. by Inostroza, Luis / Fürst, Christine

1 Issue per year

Online
ISSN
2300-3669
See all formats and pricing

Access brought to you by:

provisional account

Open Access
More options …

Simulation of land use impacts on sediment and nutrient transfer in coastal areas of Western Cape, South Africa

Micha Gebel
  • Corresponding author
  • HSWT University of Applied Sciences, Hans-Carl-von-Carlowitz-Platz 3, 85354 Freising, Germany
  • Gesellschaft für Angewandte Landschaftsforschung (GALF) bR, Am Ende 14, 01277 Dresden, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stephan Bürger
  • Gesellschaft für Angewandte Landschaftsforschung (GALF) bR, Am Ende 14, 01277 Dresden, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael Wallace / Hanlie Malherbe / Hannah Vogt
  • TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 6, 85354 Freising, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Carsten Lorz
Published Online: 2017-01-13 | DOI: https://doi.org/10.1515/cass-2017-0001

Abstract

A major challenge for water resource management in Western Cape, South Africa, is the reduction of the growing sediment and nutrient loads in coastal areas, which belong to the areas most affected by land use change. We used the WebGIS based software STOFFBILANZ to simulate runoff, soil loss, sediment, phosphorus, and nitrogen input in the surface water and groundwater of study area (ca. 6,450 km²). The simulated runoff shows a large regional variability caused by the heterogeneous distribution of rainfall. For the reference catchment Klein River simulated total daily runoff fit the observed values of the reference year 2012. The calculation of potential input of sediment, phosphorus, and nitrogen into waters is based on aggregated or generalized information on climate data, land use types, crop and fruit types, yields, mineral fertilizers, farm manure, nitrogen fixing by leguminous plants, atmospheric nitrogen deposition, and soil denitrification. Critical source areas for potential sediment input, particulate P input and diffuse N input are mainly agricultural areas. Additionally, point sources of high relevance for N and P are found in urban areas. Based on the potential input of sediment and nutrients the impacts of current land use change on water resources were estimated. We used the web-based information system WebLand for the simulation aiming at the provision of stakeholders with information for decision making in water resource management.

Keywords: Land use change; meso-scale; model; nitrogen; phosphorus; sediment; runoff; soil erosion; Western Cape

References

  • [1] Gillson L., Midgley G.F., Wakeling J.L., Exploring the significance of land cover change in South-Africa, S. Afr. J. Sci., 2012, 108, 5/6Google Scholar

  • [2] DEAP, Western Cape State of the Environment Report 2005 (Year One), Provincial Government, Department of Environmental Affairs and Development Planning, South Africa, 2005Google Scholar

  • [3] DEAP, Western Cape Integrated Water Resource Management (IWRM) Action Plan: Status Quo Report Final Draft, Provincial Government, Department of Environmental Affairs and Development Planning, South Africa, 2011Google Scholar

  • [4] Gebel M., Halbfaß S., Bürger S., Uhlig M., STOFFBILANZ - Commentary of the STOFFBILANZ programme, 2012, http://galf-dresden.de/galf/wp-content/uploads/2013/06/Stoffbilanz_commentary.pdfGoogle Scholar

  • [5] Gebel M., Halbfaß S., Bürger S., Lorz C., Long-term simulation of effects of energy crop cultivation on nitrogen leaching and surface water quality in Saxony/Germany, Reg. Environ. Change, 2013, 13, 249-261Google Scholar

  • [6] Gebel M., Meißner R., Halbfaß S., Hagenau J., Duan S., Web GIS-based simulation of water fluxes in the Miyun catchment area, IForest-Biogeosci. Forestry, 2014, 7, 363-371. doi:CrossrefGoogle Scholar

  • [7] Gebel M., Uhlig M., Halbfass S., Meißner R., Duan S., Predicting erosion and sediment yield in a mesoscale basin in the semiarid mosoon region Miyun/China, Ecological Processes, 2014, 3, 5. doi:CrossrefGoogle Scholar

  • [8] Meissner R., Gebel M., Hagenau J., Halbfass S., Engelke P., Giessler M., Duan S., Lu B., Wang X., WebGIS-based approach to simulate water and solute fluxes in the Miyun basin in China, In: Borchardt D., Bogardi J., Ibisch R. (Eds.), Integrated Water Resources Management: Concept, Research and Implementation, Springer, 2016Google Scholar

  • [9] Lam Q.D., Schmalz B., Fohrer N., Ecohydrological modelling of water discharge and nitrate loads in a mesoscale lowland catchment, Germany, Adv. Geosci., 2009, 21, 49-55Google Scholar

  • [10] Krysanova V., Hattermann, F., Huang, S.H., Hesse C., Vetter T., Liersch S., Koch H., Kundzewicz Z.W., Modelling climate and land-use change impacts with SWIM: lessons learnt from multiple applications, Hydrol. Sci. J., 2015, 4, 606-635Google Scholar

  • [11] Thomas A., Chingombe W., Ayuk J., Scheepers T., A comprehensive investigation of the Kuils-eerste river catchments water pollution and development of a catchment sustainability plan, WRC Report No. 1692/1/1, 2010Google Scholar

  • [12] Bath, A.J., Phosphate transport in the Berg River, Western Cape, Technical Report of the Department of Water Affairs and Forestry, Pretoria, TR 143, 1989Google Scholar

  • [13] Fey M.V., De Clercq W.P., A pilot study investigating the role of dryland salinity in the quality of the water of the Berg River, WRC Report, 1342/1/04, 2004Google Scholar

  • [14] Nitsche N., Kamish W., Görgens A.H.M., Application of hydrodynamic river flow and reservoir water quality models to the Berg River system, In: Görgens A.H.M., De Clercq W.P. (Eds.), A Water Quality Information System for Integrated Water Resource Management: The Riviersonderend-Berg River System, Final report to the Water Research Commission, Editors:, Departments of Civil Engineering and Soil Science, University of Stellenbosch, WRC Report No : TT 252/05, 2005Google Scholar

  • [15] DWAF, Berg River Baseline Monitoring Programme - Final Report - Volume 1, Department Water Affairs and Forestry, Report No. P WMA 19/G10/00/1707, 2007Google Scholar

  • [16] De Clercq W.P., Jovanovic N., Bugan R., Mashimbye D., Du Toit T., Van Niekerk A., Ellis F., Wasserfall N., Botha P., Steudels T., Helmschrot J., Flügel W., Management of human-induced salinisation in the Berg River catchment and development of criteria for regulating agricultural land use in terms of salt generating capacity, WRC Report 1849/1/13, 2013Google Scholar

  • [17] Le Roux J.J., Morgenthal T.L., Malherbe J., Pretorius D.J., Sumner P.D., Water erosion prediction at a national scale for South Africa, Water S.A. 2008, 34, 3.Google Scholar

  • [18] Maherry A., Clarke S., Tredoux G., Engelbrecht P., A spatial and temporal analysis of the Nitrate concentration in groundwater for South Africa, Natural Resources and the Environment, Council for Scientific and Industrial Research (CSIR), Stellenbosch, 2009Google Scholar

  • [19] Van den Berg E.C., Plarre C., Van den Berg H.M., Thompson M.W., The South African National Land Cover 2000, Agricultural Research Council-Institute for Soil, Climate and Water, Pretoria, Report No. GW/A/2008/86, 2008Google Scholar

  • [20] Manning J., Field guide to Fynbos, Struik Nature, Cape Town, South Africa, 2007Google Scholar

  • [21] Fischer G., Nachtergaele F., Prieler S., Van Velthuizen H.T., Verelst L., Wiberg D., Global Agro-ecological Zones Assessment for Agriculture (GAEZ 2008), IIASA, Laxenburg, Austria and FAO, Rome, Italy, 2008, http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soildatabase-v12/en/Google Scholar

  • [22] MacVicar C.N., De Villiers J.M., Loxton R.F., Verster E., Lambrechts J.J.N., Merryweather F.R., Soil classification: A binomial system for South Africa. Dept. Agric. Tech. Services, Pretoria, 1977Google Scholar

  • [23] MODIS, Moderate Resolution Imaging Spectroradiometer, 2010, http://modis.gsfc.nasa.gov/data/dataprod/mod16.phpGoogle Scholar

  • [24] Dentener F.J., Global Maps of Atmospheric Nitrogen Deposition, 1860, 1993, and 2050, Data set, Available on-line from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A., 2006, https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=830Google Scholar

  • [25] Allen R.G., Pereira L.S., Raes D., Smith M., Crop Evapotranspiration - guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper No. 56, 1998Google Scholar

  • [26] NRCS, National Engineering Handbook Part 630 Hydrology - Estimation of Direct Runoff from Storm Rainfall, United States Department of Agriculture, Natural Resources Conservation Service, 2004Google Scholar

  • [27] Hawkins R.H., Ward T.J., Woodward D.E., Van Mullem J.A., Curve Number Hydrology: State of the Practice, American Society of Civil Engineers, Reston, Virginia, 2009Google Scholar

  • [28] Wischmeier W.H., Smith D.D., Predicting rainfall losses - a guide to conservation planning, USDA Agriculture Handbook, 1978, 537, 1-58Google Scholar

  • [29] Yu B., Rosewell C.J., A robust estimator of the R-factor for the universal loss equation, American Society of Agricultural Engineers, 1996, 2, 559-561Google Scholar

  • [30] Kinnell P.I.A., The USLE-M and Modeling Erosion Within Catchments, In: Stott D.E., Mohtar R.H., Steinhardt G.C. (Eds.), Sustaining the Global Farm, Selected papers from the 10th International Soil Conservation Organization on Meeting held May 24-29, 1999 at Perdue University and the USDA-ARS National Soil Erosion Research Laboratory, 2001Google Scholar

  • [31] Conrad O., Bechtel B., Bock M., Dietrich H., Fischer E., Gerlitz L., Wehberg J., Wichmann V., Böhner J., System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991-2007, DOI: 10.5194/gmd-8-1991-2015, 2015Google Scholar

  • [32] Arnoldus J.M.J., Methodology used to determine the maximum potential average annual soil loss due to sheet and rill erosion in Morroco, FAO Soils Bull., 1977, 34, 39-51Google Scholar

  • [33] Renard K.G., Freimund J.R., Using monthly precipitation data to estimate the R-factor in the revised USLE, J. Hydrol., 1994, 157, 287-306Google Scholar

  • [34] COST Action 869, Mitigation Options for Nutrient Reduction in Surface Water and Groundwaters, 164th CSO Meeting 29-30 March 2006, Proposal for a new COST Action, European Cooperation in Science and Technology, Brussels, 2006Google Scholar

  • [35] Voges J., Empirisches Modell für die mittlere Maßstabsebene zur GIS-gestützten Bestimmung der Anbindung erosionsgefährdeter Ackerflächen an Fließgewässer, Dissertation, University of Hannover, 1999, (in German)Google Scholar

  • [36] Veith T.L., Agricultural BMP placement for cost-effective pollution control at the watershed level, Virginia Polytechnic Institute and State University, 2002Google Scholar

  • [37] Halbfaß S., 2005, Entwicklung eines GIS-gestützten Modells zur Quantifizierung diffuser Phosphoreinträge in Oberflächengewässer im mittleren Massstab unter Berücksichtigung geoökologisch wirksamer Raumstrukturen, Rhombos, Berlin, 2005, (in German)Google Scholar

  • [38] Witkowski E.T.F., Mitchell D.T., Variations in soil Phosphorus in the Fynbos Biome, South Africa, J. Ecol., 1987, 75, 1159-1171Google Scholar

  • [39] Dube E., Chiduza C., Muchaonyerwa P., High biomass yielding winter cover crops can improve phosphorus availability in soil, S. Afr. J. Sci., 2014, 110, 3/4Google Scholar

  • [40] Schmidt C.J.J., Adriaanse F.G., du Preez C.C., Extractable soil phosphorus threshold values for dryland maize on the South African Highveld, South Afr. J. Plant Soil, 2007, 24/1, 37-46Google Scholar

  • [41] Auerswald, K., Predicting nutrient enrichment from long term average soil loss, Soil Techn., 1989, 2, 271-277Google Scholar

  • [42] Ghadiri H., Rose C.W., Soil processes and chemical transport. Sorbed chemical transport in overland flow, 1. A nutrient and pesticide enrichment mechanism, J. Environ. Qual., 1991, 20, 628-633CrossrefGoogle Scholar

  • [43] Ghadiri H., Rose C.W., Soil processes and chemical transport. Sorbed chemical transport in overland flow, 2. Enrichment ratio variation with erosion process, J. Environ. Qual., 1991, 20, 634-641CrossrefGoogle Scholar

  • [44] Wendland F., Kunkel R., Grimvall A., Kronvang B., Müller- Wohlfeil D., Model system for the management of nitrogen leaching at the scale of river basins and regions, Water Sci. Technol., 2001, 43/7, 215-222Google Scholar

  • [45] UBA, Manual on methodologies and criteria for mapping critical levels/loads and geographical areas where they are exceeded, Coordination Center for Effects and the Secretariat of the United Nations Economic Commission for Europe, UBA-Texte 71/96, Berlin, 1996Google Scholar

  • [46] Naudé A., Badenhorst W., Zietsman L., Van Huyssteen E., Maritz J., Geospatial Analysis Platform - Version 2: Technical overview of the mesoframe methodology and South African Geospatial Analysis Platform, CSIR Report number: CSIR/BE/ PSS/IR/2007/0104/B, 2007Google Scholar

  • [47] Jedele K., Lüder M., Soldner M., Ermittlung von Stofffrachten aus Abwassereinleitungen in Oberflächengewässer (punktuelle Einträge), Studie der Dr.- Ing. Jedele und Partner GmbH Verfahrenstechnik Wasser Abwasser Schlammim im Auftrag des Thüringer Ministeriums für Landwirtschaft, Naturschutz und Umwelt, Erfurt, 2007, (in German) Google Scholar

  • [48] Nash J.E., Sutcliffe J.V., River flow forecasting through conceptual models part I - A discussion of principles, J. Hydrol., 1970, 10/3, 282-290CrossrefGoogle Scholar

  • [49] DWA, Hydrological Services - Surface Water (Data, Dams, Floods and Flows), Department Water and Sanitation, Republic of South Africa, 2014, https://www.dwaf.gov.za/Hydrology/Google Scholar

  • [50] Moriasi D.N., Arnold J.G., Van Liew M.W., Bingner R.L., Harmel R.D., Veith T.L., Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Am. Soc. Agri. Biol. Eng., 2007, 50/3, 885-900.Google Scholar

  • [51] Msadala V., Gibson L., Le Roux J., Rooseboom A., Basson G.R., Sediment Yield Prediction for South Africa: 2010 Edition, Report to the WATER RESEARCH COMMISSION by Stellenbosch University & ARC, WRC Report No. 1765/1/10, ISBN 978-1-4312-0042-9, 2010Google Scholar

  • [52] DWA, National Water Management System data extracted on [2016-03-16] Department of Water and Sanitation, Pretoria, 2016Google Scholar

  • [53] Haskins C., False Bay Ecology Park Water Quality Report, TCT Planning Department Stormwater & Sustainability, 2014, http://www.zeekoevlei.co.za/wp-content/uploads/2014/06/FBEP-WQ-Report_23-April-2014.pdfGoogle Scholar

About the article

Received: 2016-05-30

Accepted: 2016-08-18

Published Online: 2017-01-13

Published in Print: 2017-01-01


Citation Information: Change and Adaptation in Socio-Ecological Systems, Volume 3, Issue 1, Pages 1–17, ISSN (Online) 2300-3669, DOI: https://doi.org/10.1515/cass-2017-0001.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
E. Petermann, K. Knöller, C. Rocha, J. Scholten, R. Stollberg, H. Weiß, and M. Schubert
Journal of Geophysical Research: Oceans, 2018

Comments (0)

Please log in or register to comment.
Log in