Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Change and Adaptation in Socio-Ecological Systems

Climate Change, Social Changes, Technological Development

Ed. by Inostroza, Luis / Fürst, Christine

Open Access
See all formats and pricing
More options …

Quantification of anthropogenic metabolism using spatially differentiated continuous MFA

Georg Schiller
  • Leibniz Institute of Ecological Urban and Regional Development (IOER), Weberpl. 1, 01217 Dresden, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Karin Gruhler
  • Leibniz Institute of Ecological Urban and Regional Development (IOER), Weberpl. 1, 01217 Dresden, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Regine Ortlepp
Published Online: 2017-12-29 | DOI: https://doi.org/10.1515/cass-2017-0011


Coefficient-based, bottom-up material flow analysis is a suitable tool to quantify inflows, outflows and stock dynamics of materials used by societies, and thus can deliver strategic knowledge needed to develop circular economy policies. Anthropogenic stocks and flows are mostly of bulk nonmetallic mineral materials related to the construction, operation and demolition of buildings and infrastructures. Consequently, it is important to be able to quantify circulating construction materials to help estimate the mass of secondary materials which can be recovered such as recycled aggregates (RA) for fresh concrete in new buildings. Yet as such bulk materials are high volume but of low unit value, they are generally produced and consumed within a region. Loops are thus bounded not only by qualitative and technical restrictions but also spatially to within regions. This paper presents a regionalized continuous MFA (C-MFA) approach taking account of these restrictions of local consumption, quality standards and technical limitations, illustrated using the example of Germany. Outflows and inflows of stocks are quantified at county level and generalized by regional type, considering demand and supply for recycled materials. Qualitative and technical potentials of recycling loops are operationalized by defining coefficients to reflect waste management technologies and engineering standards. Results show that 48% of outflows of concrete and bricks are suitable for high-quality recycling, while 52% of outflows do not fulfill the quality requirement and must be recovered or disposed of elsewhere. The achievable inflow to RA is limited by the building activity as well as the requirements of the construction industry, e.g. the RA fraction of fresh concrete must not exceed 32%. In addition, there exist spatial disparities in construction across the country. In Germany, such disparities mean that there will be a shortfall in RA of 6.3 Gt by the year 2020, while the technically available but unusable RA (due to a regional mismatch of potential supply and demand) will total 3.2 Gt. Comprehensive recycling strategies have to combine high-quality recycling with other lower-grade applications for secondary raw materials. Particularly in the case of building materials, essential constraints are not only technical but also local conditions of construction and demolition. These interrelations should be identified and integrated into a comprehensive system to manage the social metabolism of materials in support of circular economy policies.

This article offers supplementary material which is provided at the end of the article.

Keywords : continuous material flow analysis (C-MFA); regionalized MFA; ewMFA; building material; construction and demolition waste (C&D waste); recycled aggregates (RA); circular economy


  • [1] Ellen MacArthur Foundation. 2016. Intelligent Assets: Unlocking the circular economy potential. www.ellenmacarthurfoundation.org/assets/downloads/publications/EllenMacArthurFoundation_Intelligent_Assets_080216-AUDIOE.pdf. Accessed 25 April 2016.Google Scholar

  • [2] SUN (Stiftungsfonds fur Umweltokonomie und Nachhaltigkeit), Ellen MacArthur Foundation, McKinsey Center for Business and Environment, eds. 2015. Growth Within: a circular economy vision for a competitive Europe. www.ellenmacarthurfoundation.org/publications/growth-within-acircular-economy-vision-for-competitive-europe. Accessed 25 April 2016.Google Scholar

  • [3] Federal Government. 2016. German Resource Efficiency Programme (ProgRess). Programme for the sustainable use and conservation of natural resources. Progress report 2012 - 2015 and update 2016 - 2019. Berlin: Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety.Google Scholar

  • [4] European Commission. 2015. Closing the loop - An EU action plan for the Circular Economy. Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions. COM(2015) 614 final. Brussels: European Commission, 2.12.2015. http://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=CELEX:52015DC0614.Google Scholar

  • [5] Baynes, T. M. and D. B. Muller. 2016. A Socio-economic Metabolism Approach to Sustainable Development and Climate Change Mitigation. Taking Stock of Industrial Ecology, edited by R. Clift and A. Druckman. doi:CrossrefGoogle Scholar

  • [6] Brunner, P. H. and H. Rechberger. 2004. Practical Handbook of Material Flow Analysis. Liwis Publishers.Google Scholar

  • [7] Eurostat. 2001. Economy-wide material flow accounts and derived indicators: A methodological guide. 2000 Edition. Luxembourg: Office for Official Publications of the European Communities. ISBN 92-894-0459-0. http://ec.europa.eu/eurostat/documents/1798247/6191533/3-Economy-widematerial-flow-accounts...-A-methodological-guide-2000-edition.pdf/9dfae42d-0831-4522-9fe5-571785f8fecf.Google Scholar

  • [8] Eurostat. 2013. Economy-wide Material Flow Accounts (EW-MFA). Compilation Guide 2013. Luxembourg. http://ec.europa.eu/eurostat/documents/1798247/6191533/2013-EW-MFA-Guide-10Sep2013.pdf/.Google Scholar

  • [9] OECD. 2007. Measuring Material Flows and Resource Productivity. The OECD guide. Working Group on Environmental Information and Outlooks. ENV/EPOC/SE(2006)1/REV3. Paris. Google Scholar

  • [10] UN. 2014. System of Environmental-Economic Accounting 2012 - Central Framework. United Nations: New York.Google Scholar

  • [11] Schiller, G., F. Muller and R. Ortlepp. 2016. Mapping the anthropogenic stock in Germany: Metabolic evidence for a circular economy. Resources, Conservation and Recycling (2016). http://dx.doi.org/10.1016/j.resconrec.2016.08.007.CrossrefGoogle Scholar

  • [12] UNEP (United Nations Environment Programme) International Panel for Sustainable Resource Management: Working Group on the Global Metal Flows, ed. 2010. Metal Stocks in Society: Scientific Synthesis. Paris: UNEP DTIE. www.unep.org/resourcepanel/Portals/24102/PDFs/Metalstocksinsociety.pdf. Accessed 25 April 2016.Google Scholar

  • [13] Ortlepp, R., K. Gruhler and G. Schiller, 2016. Material stocks in Germany’s non-domestic buildings: a new quantification method. Building Research & Information 44(8), 840-862. doi:CrossrefGoogle Scholar

  • [14] Baccini, P. and P. H. Brunner. 2012. Metabolism of the anthroposphere: Analysis, Evaluation, Design. 2nd ed. Cambridge: MIT Press. ISBN: 9780262016650.Google Scholar

  • [15] Tanikawa, H., T. Fishman, K. Okuoka and K. Sugimoto. 2015. The weight of society over time and space: A comprehensive account of the construction material stock of Japan, 1945-2010: The construction material stock of Japan. Journal of Industrial Ecology 19: 778-791. doi:CrossrefGoogle Scholar

  • [16] Augiseau, V., and S. Barles. 2016. Studying construction materials flows and stock: A review. Resour Conserv Recy 123: 153164. http://dx.doi.org/10.1016/j.resconrec.2016.09.002.CrossrefGoogle Scholar

  • [17] Hashimoto, S., H. Tanikawa and Y. Moriguchi. 2007. Where will large amounts of materials accumulated within the economy go? - A material flow analysis of construction minerals for Japan. Waste management 27: 1725-1738.CrossrefGoogle Scholar

  • [18] Moriguchi, Y. and S. Hashimoto. 2016. Material Flow Analysis and Waste Management. In Taking Stock of Industrial Ecology, edited by R. Clift and A. Druckman. doi:CrossrefGoogle Scholar

  • [19] Schebek L. 2014. Urban Mining: Characterizing the Non-Housing Building Stock. Proceedings of Industrial Ecology in the Asia-Pacific Century, 17.-19.11.2014, Melbourne.Google Scholar

  • [20] Rechberger, H. 2013. Urban Mining - Why and How? Paper presented at the 2nd Freiberg Resource Technology Symposium, Freiberg.Google Scholar

  • [21] Brunner, P. H. 2011. Urban Mining: A Contribution to Reindustrializing the City. Journal of Industrial Ecology 15: 339-341. doi:CrossrefGoogle Scholar

  • [22] Pacheco-Torgal, F., L-F. Cabeza, J. Labrincha and A. de Magalhaes. 2014. Eco efficient construction and building materials. Oxford: Woodhead Publishing.Google Scholar

  • [23] Prognos AG and Ecowin GmbH, eds. 2011. Bewertung der Mantelverordnung des BMU zur Grundwasserverordnung, Ersatzbaustoffverordnung und Änderung der Bundes- Bodenschutz- und Altlastenverordnung vom 06.01.2011.Google Scholar

  • [Review of BMU Regulation on the groundwater regulation, substitute building materials regulation and amending the federal soil protection regulation of 06.01.2011.] Final report for BBR/BMVBS. Berlin.Google Scholar

  • [24] Mulder, E., T. P. R. de Jong and L. Feenstra. 2007. Closed Cycle Construction: An integrated process for the separation and reuse of C&D waste. Waste Management 27: 1408-1415. doi:CrossrefGoogle Scholar

  • [25] Muller, A. 2013a. Opportunities and limitations of concrete recycling (part 1). BFT International 04/2013, 78-92.Google Scholar

  • [26] Muller, A. 2013b. Opportunities and limitations of concrete recycling (part 2). BFT International 05/2013, 28-39.Google Scholar

  • [27] Raess, C., M. Hiete and O. Rentz. 2006. A planning system for waste management on construction sites. In: Vogrin, A. (Ed), Abfall und Deponietechnik , Altlasten, Abfallwirtschaft [Waste and landfill engineering, contaminated sites, waste management]. Proceedings of 8. DepoTech Conference, Loeben, Osterreich. VGE Verlag. Essen.Google Scholar

  • [28] Shima, H., H. Tateyashiki, R. Matsuhashi and Y. Yoshida. 2005. An Advanced Concrete Recycling Technology and its Applicability Assessment through Input-Output Analysis. Journal of Advanced Concrete Technology 3(1): 53-67.CrossrefGoogle Scholar

  • [29] Schultmann, F. and N. Sunke. 2006. Closed-loop oriented project management in construction: An approach for sustainable construction management, in: Proceedings of Conference Rethinking Sustainable Construction 2006, Sarasota, USA, 19-22 September 2006, 27pp.Google Scholar

  • [30] Limbachiya, M. C., T. Leelawat and R. K. Dhir. 2000. Use of recycled concrete aggregate in high-strength concrete. Materials and Structures 33: 574-580. Google Scholar

  • [31] Oikonomou, N.D. 2005. Recycled concrete aggregates. Cement & Concrete Composites 27: 315-318. doi:CrossrefGoogle Scholar

  • [32] Rao, A., K. N. Jha and S. Misra. 2007. Use of aggregates from recycled construction and demolition waste in concrete. Resources, Conservation and Recycling 50: 71-81. doi:CrossrefGoogle Scholar

  • [33] Saiz-Martinez, P., W. Gonzalez-Cortina and F. Fernandez- Martinez. 2015. Characterization and influence of fine recycled aggregates on masonry mortars properties. Materiales de Construcción 65 (319). doi:CrossrefGoogle Scholar

  • [34] Tabsh, S.W. and A. S. Abdelfatah. 2009. Influence of recycled concrete aggregates on strength properties of concrete. Construction and Building Materials 23: 1163-1167. doi:CrossrefGoogle Scholar

  • [35] Schiller, G., K. Gruhler and R. Ortlepp, 2017. Continuous material flow analysis approach for bulk nonmetallic mineral building materials applied to the German building sector. Journal of Industrial Ecology 21(3): 673-688. http://dx.doi.org/10.1111/jiec.12595CrossrefGoogle Scholar

  • [36] Fonseca, N., J. de Brito and L. Evangelista. 2011. The influence of curing conditions on the mechanical performance of concrete made with recycled concrete waste. Cement & Concrete Composites 33: 637-643.CrossrefGoogle Scholar

  • [37] Yang, J., Q. Du and Y. Bao. 2011. Concrete with recycled concrete aggregate and crushed clay bricks. Construction and Building Materials 25: 1935-1945. doi:CrossrefGoogle Scholar

  • [38] Mas, B., A. Cladera, T. del Olmo and F. Pitarch. 2012. Influence of the amount of mixed recycled aggregates on the properties of concrete for non-structural use. Construction and Building Materials 27: 612-622. doi:CrossrefGoogle Scholar

  • [39] Perez-Carrion, M., F. Baeza-Brotons, J. Paya, J. M. Saval, E. Zornoza, M. V. Borrachero and P. Garces. 2014. Potential use of sewage sludge ash (SSA) as a cement replacement in precast concrete blocks. Materiales de Construcción 64 (313). doi:CrossrefGoogle Scholar

  • [40] Tam, V. W. Y. and C. M. Tam. 2006. A review on the viable technology for construction waste recycling. Resources, Conservation and Recycling 47: 209-221. doi:CrossrefGoogle Scholar

  • [41] Robinson, G. R., Jr. and W. M. Brown. 2002. Sociocultural dimensions of supply and demand for natural aggregate - examples from the Mid-Atlantic Region. Open-File Report 02-350. United States: U.S. Geological Survey.Google Scholar

  • [42] Wilbrun, D. R. and G. G. Thomas. 1998. Aggregates from Natural Recycled Sources. Economic Assessment for Construction Applications - A Materials Flow Analysis. Denver: U.S. Department of the Interior. U.S. Geological Survey Circular no. 1176. http://pubs.usgs.gov/circ/1998/c1176/c1176.html. Accessed 25 April 2016.Google Scholar

  • [43] Miliutenko, S. 2009. Aggregate provision and sustainability issues in selected European cities around the Baltic Sea. Master Thesis. Stokholm: KTH, Department of Urban Planning and Environment Division of Environmental Strategies Research - fms, Kungliga Tekniska hogskolan.Google Scholar

  • [44] Socolow, A. A. 1995. Construction aggregate resources of New England - An analysis of supply and demand. In Proceedings of the New England Governors Association, New York, N.Y.Google Scholar

  • [45] Hendriks, C. F. and G. M. T. Jannsen. 2004. A New Vision on the Building Cycle. Boxtel: Aneas Technical Publishers.Google Scholar

  • [46] Hiete, M., J. Stengel, J. Ludwig and F. Schultmann. 2011. Matching construction and demolition waste supply to recycling demand: a regional management chain model. Building Research & Information 39(4): 333-351. DOI: 10.1080/09613218.2011.576849.CrossrefGoogle Scholar

  • [47] BBR. 2009. Raumordnungsprognose 2025/2050. Bevölkerung, private Haushalte, Erwerbspersonen. [Planning Forecast 2025/2050. Population, households, labor force.] BBR-Berichte Vol. 29, Bonn: Bundesamt fur Bauwesen und Raumordnung.Google Scholar

  • [48] Binder, C., H. Bader, R. Scheidegger and P. Baccini. 2001. Dynamic models for managing durables using a stratified approach. The case of Tunja, Colombia. Ecologic Economics 38: 191-207.Google Scholar

  • [49] Johnstone, I. 2001a. Energy and mass flows of housing: A Model and Example. Building and Environment 36(1): 27-41.Google Scholar

  • [50] Johnstone, I. 2001b. Energy and mass flows of housing: Estimating mortality. Building and Environment 36(1): 43-51.CrossrefGoogle Scholar

  • [51] Muller, D. B. 2006. Stockdynamics for forecasting material flows - Case study for housing in the Netherlands . Ecologic Economics 59(1): 142-156.Google Scholar

  • [52] Banse, J. and K.-H. Effenberger. 2006. Deutschland 2050 - Auswirkungen des demographischen Wandels auf den Wohnungsbestand. [Germany 2050 - impact of demographic change on the housing stock.] IOR Texte no. 152. Dresden: IOER.Google Scholar

  • [53] Destatis. 2003. Bevölkerung Deutschlands von 2002 bis 2050 - 10. koordinierte Bevölkerungsvorausberechnung. [Germany’s population from 2002 to 2050 - 10th coordinated population projection.]Google Scholar

  • [54] Destatis. 1991-2007. Statistische Jahrbücher für die Bundesrepublik Deutschland für die Jahre 1991 bis 2007. [Statistical Yearbooks for the Federal Republic of Germany for the years 1991 to 2007.]Google Scholar

  • [55] Ortlepp, R., K. Gruhler and G. Schiller, 2017. Materials in Germany’s domestic building stock: calculation model and uncertainties. Building Research & Information 46(2): 164-178. http://dx.doi.org/10.1080/09613218.2016.1264121.CrossrefGoogle Scholar

  • [56] Weimann, K., J. Matyschik, Ch. Adam, T. Schulz, E. Lins and A. Muller. 2013. Optimierung des Rückbaus/Abbruchs von Gebäuden zur Rückgewinnung und Aufbereitung von Baustoffen unter Schadstoffentfrachtung (insbes. Sulfat) des RC-Materials sowie ökobilanzieller Vergleich von Primär- und Sekundärrohstoffeinsatz inkl. Wiederverwertung. [Optimization of demolition/dismantling of buildings for the recovery and treatment of building materials considering the reduction of harmful substances (in particular sulphates) in the recycled building material and aspects of life-cycle analyses]. Berlin: UBA. Texte no. 05/2013. www.uba.de/uba-info-medien/4430.html. Accessed 25 April 2016.Google Scholar

  • [57] Cha, H., K. Kim, K. and C. Kim. 2012. Case Study on Selective Demolition Method for Refurbishing Deteriorated Domestic Apartments. Journal of Construction Engineering and Management 138: 294-303. Doi:10.1061/(ASCE)CO.1943-7862.0000424.CrossrefGoogle Scholar

  • [58] EN 12620:2013. Aggregates for concrete.Google Scholar

  • [59] Hoffmann, C. and F. Jacobs. 2007. Recyclingbeton aus Betonund Mischabbruchgranulat: Sachstandsbericht [Recycled concrete made of RCA and RA: State-of-the-art-report]. D¨ubendorf, Switzerland: EMPA. Google Scholar

  • [60] Behler, K. 2002. Betonbrechsande in sandreichen Betonen. [Crushes concrete sands in sand-rich concretes]. Baustoff Recycling + Deponietechnik (BR) 18(6): 25-28. Google Scholar

  • [61] Weil, M. 2004. Ressourcenschonung und Umweltentlastung bei der Betonherstellung durch Nutzung von Bau- und Abbruchabfällen. [Resource conservation and environmental benefits of concrete production through the use of construction and demolition waste.] Dissertation, Technische Universitat Darmstadt, Darmstadt, Germany. In-house-publishing, WAR-series no. 160.Google Scholar

  • [62] Muller, A. 2015. Progress in the recycling of masonry rubble (Part 1). Zi Ziegelindustrie International 1, 20-26. Google Scholar

  • [63] Sanchez-Roldan, Z., M. Martin-Morales, I. Valverde-Palacios, I. Valverde-Espinosa and M. Zamorano. 2016. Study of potential advantages of pre-soaking on the properties of pre-cast concrete made with recycled coarse aggregate. Mater. Construcc. 66 [321], e076. http://dx.doi.org/10.3989/mc.2016.01715.CrossrefGoogle Scholar

  • [64] Nicolai, M. 1997. Zur Konfiguration von verfahrenstechnischen Anlagen zum wirtschaftlichen Recycling von Bauschutt [For the configuration of process engineering plants for the economical recycling of construction waste]. Dissertation. Univ. Karlsruhe.Google Scholar

  • [65] DAfStb Beton, rezyklierte Gesteinskornung:2010-09. DAfStb-Richtlinie: Beton nach DIN EN 206-1 und DIN 1045-2 mit rezyklierten Gesteinskörnungen nach DIN EN 12620, Teil 1: Anforderungen an den Beton für die Bemessung nach DIN EN 1992-1-1. [DAfStb guideline: Concrete acc. to DIN EN 206-1 and DIN 1045-2 with RA acc. to DIN EN 12620, Part 1: RequirementsGoogle Scholar

  • for the concrete for dimensioning in accordance with DIN EN 1992-1-1.] Berlin: Beuth.Google Scholar

  • [66] Messari-Becker, L., A. Mettke, F. Knappe, U. Storck, K. Bollinger and M. Grohmann. 2014. Recycling concrete in practice - a chance for sustainable resource management. Structural Concrete 15(4): 556-562. doi:CrossrefGoogle Scholar

  • [67] Pepe, M., R. D. Toledo Filho, E. A. B. Koenders, E. Martinelli. 2014. Alternative processing procedures for recycled aggregates in structural concrete. Construction and Building Materials 69: 124-132. doi:CrossrefGoogle Scholar

  • [68] Huang, B., X. Shu and E. G. Burdette. 2006. Mechanical properties of concrete containing recycled asphalt pavements. Magazine of Concrete Research 58(5): 313-20. doi:CrossrefGoogle Scholar

  • [69] Padmini, A. K., K. Ramamurthy and M. S. Mathews. 2009. Influence of parent concrete on the properties of recycled aggregate concrete. Construction and Building Materials 23: 829-836. doi:CrossrefGoogle Scholar

  • [70] Xiao, J., W. Li, Y. Fan, X Huang. 2012. An overview of study on recycled aggregate concrete in China (1996-2011). Construction and Building Materials 31: 364-383. doi:CrossrefGoogle Scholar

  • [71] Katz, A. 2003. Properties of concrete made with recycled aggregate from partially hydrated old concrete. Cement and Concrete Research 33: 703-711. doi:CrossrefGoogle Scholar

  • [72] Wagih, A. M., H. Z. El-Karmoty, M. Ebid and S. H. Okba. 2013. Recycled construction and demolition concrete waste as aggregate for structural concrete. HBRC Journal 9(3): 193-200. doi:CrossrefGoogle Scholar

  • [73] Evangelista, L. and J. de Brito. 2007. Mechanical behaviour of concrete made with fine recycled concrete aggregates. Cement and Concrete Composites 29: 397-401 Google Scholar

  • [74] Radonjanin, V., M. Malešev, S. Marinković and A. E. S. Al Malty. 2013. Green recycled aggregate concrete. Construction and Building Materials 47: 1503-1511. doi:CrossrefGoogle Scholar

  • [75] Kuosa, H. 2012. Reuse of recycled aggregates and other C&D wastes. Research report. Espoo: VTT Finland. Google Scholar

  • [76] Van den Heede, Ph., N. Ringoot, A. Beirnaert, A. Van Brecht, E. Van den Brande, G. De Schutter and N. De Belie. 2016. Sustainable High Quality Recycling of Aggregates from Wasteto-Energy, Treated in a Wet Bottom Ash Processing Installation, for Use in Concrete Products. Materials 9(1): 9. doi:CrossrefGoogle Scholar

  • [77] EN 206:2013. Concrete. Specification, performance, production and conformity. Google Scholar

  • [78] EN 933-11:2009. Tests for geometrical properties of aggregates. Classification test for the constituents of coarse recycled aggregate. Google Scholar

  • [79] DIN 4226-100:2002-02. Aggregates for concrete and mortar - Part 100: Recycled aggregates. DIN-Normenausschuss Bauwesen. Google Scholar

  • [80] Schubert, S. and C. Hoffmann. 2011. Grundlagen für die Verwendung von Recyclingbeton mit Mischgranulat. [Bases for the use of recycled concrete with mixed granulate.] Final report of cemsuisse-Projekt 200602.Google Scholar

  • [81] MPI. 2011. Population Projection for Vietnam 2009 - 2049. Hanoi: Ministry of Planning an Investment, General Statistics Office.Google Scholar

  • [82] Haas, W., F. Krausmann, D. Wiedenhofer, and M. Heinz. 2015. How circular is the global economy?: An assessment of material flows, waste production, and recycling in the european union and the world in 2005. Journal of Industrial Ecology 19: 765-777.Google Scholar

About the article

Received: 2017-04-13

Accepted: 2018-01-16

Published Online: 2017-12-29

Published in Print: 2017-12-20

Citation Information: Change and Adaptation in Socio-Ecological Systems, Volume 3, Issue 1, Pages 119–132, ISSN (Online) 2300-3669, DOI: https://doi.org/10.1515/cass-2017-0011.

Export Citation

© 2018. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Keisuke Yoshida, Keijiro Okuoka, Alessio Miatto, Liselotte Schebek, and Hiroki Tanikawa
Resources, 2019, Volume 8, Number 3, Page 126
Andreas Mayer, Willi Haas, Dominik Wiedenhofer, Fridolin Krausmann, Philip Nuss, and Gian Andrea Blengini
Journal of Industrial Ecology, 2018

Comments (0)

Please log in or register to comment.
Log in