Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter Open Access December 29, 2017

Quantification of anthropogenic metabolism using spatially differentiated continuous MFA

  • Georg Schiller , Karin Gruhler and Regine Ortlepp EMAIL logo

Abstract

Coefficient-based, bottom-up material flow analysis is a suitable tool to quantify inflows, outflows and stock dynamics of materials used by societies, and thus can deliver strategic knowledge needed to develop circular economy policies. Anthropogenic stocks and flows are mostly of bulk nonmetallic mineral materials related to the construction, operation and demolition of buildings and infrastructures. Consequently, it is important to be able to quantify circulating construction materials to help estimate the mass of secondary materials which can be recovered such as recycled aggregates (RA) for fresh concrete in new buildings. Yet as such bulk materials are high volume but of low unit value, they are generally produced and consumed within a region. Loops are thus bounded not only by qualitative and technical restrictions but also spatially to within regions. This paper presents a regionalized continuous MFA (C-MFA) approach taking account of these restrictions of local consumption, quality standards and technical limitations, illustrated using the example of Germany. Outflows and inflows of stocks are quantified at county level and generalized by regional type, considering demand and supply for recycled materials. Qualitative and technical potentials of recycling loops are operationalized by defining coefficients to reflect waste management technologies and engineering standards. Results show that 48% of outflows of concrete and bricks are suitable for high-quality recycling, while 52% of outflows do not fulfill the quality requirement and must be recovered or disposed of elsewhere. The achievable inflow to RA is limited by the building activity as well as the requirements of the construction industry, e.g. the RA fraction of fresh concrete must not exceed 32%. In addition, there exist spatial disparities in construction across the country. In Germany, such disparities mean that there will be a shortfall in RA of 6.3 Gt by the year 2020, while the technically available but unusable RA (due to a regional mismatch of potential supply and demand) will total 3.2 Gt. Comprehensive recycling strategies have to combine high-quality recycling with other lower-grade applications for secondary raw materials. Particularly in the case of building materials, essential constraints are not only technical but also local conditions of construction and demolition. These interrelations should be identified and integrated into a comprehensive system to manage the social metabolism of materials in support of circular economy policies.

References

[1] Ellen MacArthur Foundation. 2016. Intelligent Assets: Unlocking the circular economy potential. www.ellenmacarthurfoundation.org/assets/downloads/publications/EllenMacArthurFoundation_Intelligent_Assets_080216-AUDIOE.pdf. Accessed 25 April 2016.Search in Google Scholar

[2] SUN (Stiftungsfonds fur Umweltokonomie und Nachhaltigkeit), Ellen MacArthur Foundation, McKinsey Center for Business and Environment, eds. 2015. Growth Within: a circular economy vision for a competitive Europe. www.ellenmacarthurfoundation.org/publications/growth-within-acircular-economy-vision-for-competitive-europe. Accessed 25 April 2016.Search in Google Scholar

[3] Federal Government. 2016. German Resource Efficiency Programme (ProgRess). Programme for the sustainable use and conservation of natural resources. Progress report 2012 - 2015 and update 2016 - 2019. Berlin: Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety.Search in Google Scholar

[4] European Commission. 2015. Closing the loop - An EU action plan for the Circular Economy. Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions. COM(2015) 614 final. Brussels: European Commission, 2.12.2015. http://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=CELEX:52015DC0614.Search in Google Scholar

[5] Baynes, T. M. and D. B. Muller. 2016. A Socio-economic Metabolism Approach to Sustainable Development and Climate Change Mitigation. Taking Stock of Industrial Ecology, edited by R. Clift and A. Druckman. doi:10.1007/978-3-319-20571-7_6.Search in Google Scholar

[6] Brunner, P. H. and H. Rechberger. 2004. Practical Handbook of Material Flow Analysis. Liwis Publishers.10.1201/9780203507209Search in Google Scholar

[7] Eurostat. 2001. Economy-wide material flow accounts and derived indicators: A methodological guide. 2000 Edition. Luxembourg: Office for Official Publications of the European Communities. ISBN 92-894-0459-0. http://ec.europa.eu/eurostat/documents/1798247/6191533/3-Economy-widematerial-flow-accounts...-A-methodological-guide-2000-edition.pdf/9dfae42d-0831-4522-9fe5-571785f8fecf.Search in Google Scholar

[8] Eurostat. 2013. Economy-wide Material Flow Accounts (EW-MFA). Compilation Guide 2013. Luxembourg. http://ec.europa.eu/eurostat/documents/1798247/6191533/2013-EW-MFA-Guide-10Sep2013.pdf/.Search in Google Scholar

[9] OECD. 2007. Measuring Material Flows and Resource Productivity. The OECD guide. Working Group on Environmental Information and Outlooks. ENV/EPOC/SE(2006)1/REV3. Paris. Search in Google Scholar

[10] UN. 2014. System of Environmental-Economic Accounting 2012 - Central Framework. United Nations: New York.Search in Google Scholar

[11] Schiller, G., F. Muller and R. Ortlepp. 2016. Mapping the anthropogenic stock in Germany: Metabolic evidence for a circular economy. Resources, Conservation and Recycling (2016). http://dx.doi.org/10.1016/j.resconrec.2016.08.007.10.1016/j.resconrec.2016.08.007Search in Google Scholar

[12] UNEP (United Nations Environment Programme) International Panel for Sustainable Resource Management: Working Group on the Global Metal Flows, ed. 2010. Metal Stocks in Society: Scientific Synthesis. Paris: UNEP DTIE. www.unep.org/resourcepanel/Portals/24102/PDFs/Metalstocksinsociety.pdf. Accessed 25 April 2016.Search in Google Scholar

[13] Ortlepp, R., K. Gruhler and G. Schiller, 2016. Material stocks in Germany’s non-domestic buildings: a new quantification method. Building Research & Information 44(8), 840-862. doi: 10.1080/09613218.2016.1112096.Search in Google Scholar

[14] Baccini, P. and P. H. Brunner. 2012. Metabolism of the anthroposphere: Analysis, Evaluation, Design. 2nd ed. Cambridge: MIT Press. ISBN: 9780262016650.10.7551/mitpress/8720.001.0001Search in Google Scholar

[15] Tanikawa, H., T. Fishman, K. Okuoka and K. Sugimoto. 2015. The weight of society over time and space: A comprehensive account of the construction material stock of Japan, 1945-2010: The construction material stock of Japan. Journal of Industrial Ecology 19: 778-791. doi:10.1111/jiec.12284.Search in Google Scholar

[16] Augiseau, V., and S. Barles. 2016. Studying construction materials flows and stock: A review. Resour Conserv Recy 123: 153164. http://dx.doi.org/10.1016/j.resconrec.2016.09.002.10.1016/j.resconrec.2016.09.002Search in Google Scholar

[17] Hashimoto, S., H. Tanikawa and Y. Moriguchi. 2007. Where will large amounts of materials accumulated within the economy go? - A material flow analysis of construction minerals for Japan. Waste management 27: 1725-1738.10.1016/j.wasman.2006.10.009Search in Google Scholar PubMed

[18] Moriguchi, Y. and S. Hashimoto. 2016. Material Flow Analysis and Waste Management. In Taking Stock of Industrial Ecology, edited by R. Clift and A. Druckman. doi:10.1007/978-3-319-20571-7_6.Search in Google Scholar

[19] Schebek L. 2014. Urban Mining: Characterizing the Non-Housing Building Stock. Proceedings of Industrial Ecology in the Asia-Pacific Century, 17.-19.11.2014, Melbourne.Search in Google Scholar

[20] Rechberger, H. 2013. Urban Mining - Why and How? Paper presented at the 2nd Freiberg Resource Technology Symposium, Freiberg.Search in Google Scholar

[21] Brunner, P. H. 2011. Urban Mining: A Contribution to Reindustrializing the City. Journal of Industrial Ecology 15: 339-341. doi: 10.1111/j.1530-9290.2011.00345.x.Search in Google Scholar

[22] Pacheco-Torgal, F., L-F. Cabeza, J. Labrincha and A. de Magalhaes. 2014. Eco efficient construction and building materials. Oxford: Woodhead Publishing.Search in Google Scholar

[23] Prognos AG and Ecowin GmbH, eds. 2011. Bewertung der Mantelverordnung des BMU zur Grundwasserverordnung, Ersatzbaustoffverordnung und Änderung der Bundes- Bodenschutz- und Altlastenverordnung vom 06.01.2011.Search in Google Scholar

[Review of BMU Regulation on the groundwater regulation, substitute building materials regulation and amending the federal soil protection regulation of 06.01.2011.] Final report for BBR/BMVBS. Berlin.Search in Google Scholar

[24] Mulder, E., T. P. R. de Jong and L. Feenstra. 2007. Closed Cycle Construction: An integrated process for the separation and reuse of C&D waste. Waste Management 27: 1408-1415. doi:10.1016/j.wasman.2007.03.013.Search in Google Scholar

[25] Muller, A. 2013a. Opportunities and limitations of concrete recycling (part 1). BFT International 04/2013, 78-92.Search in Google Scholar

[26] Muller, A. 2013b. Opportunities and limitations of concrete recycling (part 2). BFT International 05/2013, 28-39.Search in Google Scholar

[27] Raess, C., M. Hiete and O. Rentz. 2006. A planning system for waste management on construction sites. In: Vogrin, A. (Ed), Abfall und Deponietechnik , Altlasten, Abfallwirtschaft [Waste and landfill engineering, contaminated sites, waste management]. Proceedings of 8. DepoTech Conference, Loeben, Osterreich. VGE Verlag. Essen.Search in Google Scholar

[28] Shima, H., H. Tateyashiki, R. Matsuhashi and Y. Yoshida. 2005. An Advanced Concrete Recycling Technology and its Applicability Assessment through Input-Output Analysis. Journal of Advanced Concrete Technology 3(1): 53-67.10.3151/jact.3.53Search in Google Scholar

[29] Schultmann, F. and N. Sunke. 2006. Closed-loop oriented project management in construction: An approach for sustainable construction management, in: Proceedings of Conference Rethinking Sustainable Construction 2006, Sarasota, USA, 19-22 September 2006, 27pp.Search in Google Scholar

[30] Limbachiya, M. C., T. Leelawat and R. K. Dhir. 2000. Use of recycled concrete aggregate in high-strength concrete. Materials and Structures 33: 574-580. 10.1007/BF02480538Search in Google Scholar

[31] Oikonomou, N.D. 2005. Recycled concrete aggregates. Cement & Concrete Composites 27: 315-318. doi:10.1016/j.cemconcomp.2004.02.020.Search in Google Scholar

[32] Rao, A., K. N. Jha and S. Misra. 2007. Use of aggregates from recycled construction and demolition waste in concrete. Resources, Conservation and Recycling 50: 71-81. doi:10.1016/j.resconrec.2006.05.010.Search in Google Scholar

[33] Saiz-Martinez, P., W. Gonzalez-Cortina and F. Fernandez- Martinez. 2015. Characterization and influence of fine recycled aggregates on masonry mortars properties. Materiales de Construcción 65 (319). doi:10.3989/mc.2015.06014.Search in Google Scholar

[34] Tabsh, S.W. and A. S. Abdelfatah. 2009. Influence of recycled concrete aggregates on strength properties of concrete. Construction and Building Materials 23: 1163-1167. doi:10.1016/j.conbuildmat.2008.06.007.Search in Google Scholar

[35] Schiller, G., K. Gruhler and R. Ortlepp, 2017. Continuous material flow analysis approach for bulk nonmetallic mineral building materials applied to the German building sector. Journal of Industrial Ecology 21(3): 673-688. http://dx.doi.org/10.1111/jiec.1259510.1111/jiec.12595Search in Google Scholar

[36] Fonseca, N., J. de Brito and L. Evangelista. 2011. The influence of curing conditions on the mechanical performance of concrete made with recycled concrete waste. Cement & Concrete Composites 33: 637-643.10.1016/j.cemconcomp.2011.04.002Search in Google Scholar

[37] Yang, J., Q. Du and Y. Bao. 2011. Concrete with recycled concrete aggregate and crushed clay bricks. Construction and Building Materials 25: 1935-1945. doi:10.1016/j.conbuildmat.2010.11.063.Search in Google Scholar

[38] Mas, B., A. Cladera, T. del Olmo and F. Pitarch. 2012. Influence of the amount of mixed recycled aggregates on the properties of concrete for non-structural use. Construction and Building Materials 27: 612-622. doi:10.1016/j.conbuildmat.2011.06.073.Search in Google Scholar

[39] Perez-Carrion, M., F. Baeza-Brotons, J. Paya, J. M. Saval, E. Zornoza, M. V. Borrachero and P. Garces. 2014. Potential use of sewage sludge ash (SSA) as a cement replacement in precast concrete blocks. Materiales de Construcción 64 (313). doi:10.3989/mc.2014.06312Search in Google Scholar

[40] Tam, V. W. Y. and C. M. Tam. 2006. A review on the viable technology for construction waste recycling. Resources, Conservation and Recycling 47: 209-221. doi:10.1016/j. resconrec.2005.12.002.Search in Google Scholar

[41] Robinson, G. R., Jr. and W. M. Brown. 2002. Sociocultural dimensions of supply and demand for natural aggregate - examples from the Mid-Atlantic Region. Open-File Report 02-350. United States: U.S. Geological Survey.10.3133/ofr02350Search in Google Scholar

[42] Wilbrun, D. R. and G. G. Thomas. 1998. Aggregates from Natural Recycled Sources. Economic Assessment for Construction Applications - A Materials Flow Analysis. Denver: U.S. Department of the Interior. U.S. Geological Survey Circular no. 1176. http://pubs.usgs.gov/circ/1998/c1176/c1176.html. Accessed 25 April 2016.Search in Google Scholar

[43] Miliutenko, S. 2009. Aggregate provision and sustainability issues in selected European cities around the Baltic Sea. Master Thesis. Stokholm: KTH, Department of Urban Planning and Environment Division of Environmental Strategies Research - fms, Kungliga Tekniska hogskolan.Search in Google Scholar

[44] Socolow, A. A. 1995. Construction aggregate resources of New England - An analysis of supply and demand. In Proceedings of the New England Governors Association, New York, N.Y.Search in Google Scholar

[45] Hendriks, C. F. and G. M. T. Jannsen. 2004. A New Vision on the Building Cycle. Boxtel: Aneas Technical Publishers.Search in Google Scholar

[46] Hiete, M., J. Stengel, J. Ludwig and F. Schultmann. 2011. Matching construction and demolition waste supply to recycling demand: a regional management chain model. Building Research & Information 39(4): 333-351. DOI: 10.1080/09613218.2011.576849.10.1080/09613218.2011.576849Search in Google Scholar

[47] BBR. 2009. Raumordnungsprognose 2025/2050. Bevölkerung, private Haushalte, Erwerbspersonen. [Planning Forecast 2025/2050. Population, households, labor force.] BBR-Berichte Vol. 29, Bonn: Bundesamt fur Bauwesen und Raumordnung.Search in Google Scholar

[48] Binder, C., H. Bader, R. Scheidegger and P. Baccini. 2001. Dynamic models for managing durables using a stratified approach. The case of Tunja, Colombia. Ecologic Economics 38: 191-207.10.1016/S0921-8009(01)00155-0Search in Google Scholar

[49] Johnstone, I. 2001a. Energy and mass flows of housing: A Model and Example. Building and Environment 36(1): 27-41.10.1016/S0360-1323(99)00065-7Search in Google Scholar

[50] Johnstone, I. 2001b. Energy and mass flows of housing: Estimating mortality. Building and Environment 36(1): 43-51.10.1016/S0360-1323(99)00066-9Search in Google Scholar

[51] Muller, D. B. 2006. Stockdynamics for forecasting material flows - Case study for housing in the Netherlands . Ecologic Economics 59(1): 142-156.10.1016/j.ecolecon.2005.09.025Search in Google Scholar

[52] Banse, J. and K.-H. Effenberger. 2006. Deutschland 2050 - Auswirkungen des demographischen Wandels auf den Wohnungsbestand. [Germany 2050 - impact of demographic change on the housing stock.] IOR Texte no. 152. Dresden: IOER.Search in Google Scholar

[53] Destatis. 2003. Bevölkerung Deutschlands von 2002 bis 2050 - 10. koordinierte Bevölkerungsvorausberechnung. [Germany’s population from 2002 to 2050 - 10th coordinated population projection.]Search in Google Scholar

[54] Destatis. 1991-2007. Statistische Jahrbücher für die Bundesrepublik Deutschland für die Jahre 1991 bis 2007. [Statistical Yearbooks for the Federal Republic of Germany for the years 1991 to 2007.]Search in Google Scholar

[55] Ortlepp, R., K. Gruhler and G. Schiller, 2017. Materials in Germany’s domestic building stock: calculation model and uncertainties. Building Research & Information 46(2): 164-178. http://dx.doi.org/10.1080/09613218.2016.1264121.10.1080/09613218.2016.1264121Search in Google Scholar

[56] Weimann, K., J. Matyschik, Ch. Adam, T. Schulz, E. Lins and A. Muller. 2013. Optimierung des Rückbaus/Abbruchs von Gebäuden zur Rückgewinnung und Aufbereitung von Baustoffen unter Schadstoffentfrachtung (insbes. Sulfat) des RC-Materials sowie ökobilanzieller Vergleich von Primär- und Sekundärrohstoffeinsatz inkl. Wiederverwertung. [Optimization of demolition/dismantling of buildings for the recovery and treatment of building materials considering the reduction of harmful substances (in particular sulphates) in the recycled building material and aspects of life-cycle analyses]. Berlin: UBA. Texte no. 05/2013. www.uba.de/uba-info-medien/4430.html. Accessed 25 April 2016.Search in Google Scholar

[57] Cha, H., K. Kim, K. and C. Kim. 2012. Case Study on Selective Demolition Method for Refurbishing Deteriorated Domestic Apartments. Journal of Construction Engineering and Management 138: 294-303. Doi:10.1061/(ASCE)CO.1943-7862.0000424.10.1061/(ASCE)CO.1943-7862.0000424Search in Google Scholar

[58] EN 12620:2013. Aggregates for concrete.Search in Google Scholar

[59] Hoffmann, C. and F. Jacobs. 2007. Recyclingbeton aus Betonund Mischabbruchgranulat: Sachstandsbericht [Recycled concrete made of RCA and RA: State-of-the-art-report]. D¨ubendorf, Switzerland: EMPA. Search in Google Scholar

[60] Behler, K. 2002. Betonbrechsande in sandreichen Betonen. [Crushes concrete sands in sand-rich concretes]. Baustoff Recycling + Deponietechnik (BR) 18(6): 25-28. Search in Google Scholar

[61] Weil, M. 2004. Ressourcenschonung und Umweltentlastung bei der Betonherstellung durch Nutzung von Bau- und Abbruchabfällen. [Resource conservation and environmental benefits of concrete production through the use of construction and demolition waste.] Dissertation, Technische Universitat Darmstadt, Darmstadt, Germany. In-house-publishing, WAR-series no. 160.Search in Google Scholar

[62] Muller, A. 2015. Progress in the recycling of masonry rubble (Part 1). Zi Ziegelindustrie International 1, 20-26. Search in Google Scholar

[63] Sanchez-Roldan, Z., M. Martin-Morales, I. Valverde-Palacios, I. Valverde-Espinosa and M. Zamorano. 2016. Study of potential advantages of pre-soaking on the properties of pre-cast concrete made with recycled coarse aggregate. Mater. Construcc. 66 [321], e076. http://dx.doi.org/10.3989/mc.2016.01715.10.3989/mc.2016.01715Search in Google Scholar

[64] Nicolai, M. 1997. Zur Konfiguration von verfahrenstechnischen Anlagen zum wirtschaftlichen Recycling von Bauschutt [For the configuration of process engineering plants for the economical recycling of construction waste]. Dissertation. Univ. Karlsruhe.Search in Google Scholar

[65] DAfStb Beton, rezyklierte Gesteinskornung:2010-09. DAfStb-Richtlinie: Beton nach DIN EN 206-1 und DIN 1045-2 mit rezyklierten Gesteinskörnungen nach DIN EN 12620, Teil 1: Anforderungen an den Beton für die Bemessung nach DIN EN 1992-1-1. [DAfStb guideline: Concrete acc. to DIN EN 206-1 and DIN 1045-2 with RA acc. to DIN EN 12620, Part 1: RequirementsSearch in Google Scholar

for the concrete for dimensioning in accordance with DIN EN 1992-1-1.] Berlin: Beuth.Search in Google Scholar

[66] Messari-Becker, L., A. Mettke, F. Knappe, U. Storck, K. Bollinger and M. Grohmann. 2014. Recycling concrete in practice - a chance for sustainable resource management. Structural Concrete 15(4): 556-562. doi: 10.1002/suco.201400010. Search in Google Scholar

[67] Pepe, M., R. D. Toledo Filho, E. A. B. Koenders, E. Martinelli. 2014. Alternative processing procedures for recycled aggregates in structural concrete. Construction and Building Materials 69: 124-132. doi: 10.1016/j.conbuildmat.2014.06.084. Search in Google Scholar

[68] Huang, B., X. Shu and E. G. Burdette. 2006. Mechanical properties of concrete containing recycled asphalt pavements. Magazine of Concrete Research 58(5): 313-20. doi: 10.1680/macr.2006.58.5.313. Search in Google Scholar

[69] Padmini, A. K., K. Ramamurthy and M. S. Mathews. 2009. Influence of parent concrete on the properties of recycled aggregate concrete. Construction and Building Materials 23: 829-836. doi:10.1016/j.conbuildmat.2008.03.006. Search in Google Scholar

[70] Xiao, J., W. Li, Y. Fan, X Huang. 2012. An overview of study on recycled aggregate concrete in China (1996-2011). Construction and Building Materials 31: 364-383. doi:10.1016/j.conbuildmat.2011.12.074. Search in Google Scholar

[71] Katz, A. 2003. Properties of concrete made with recycled aggregate from partially hydrated old concrete. Cement and Concrete Research 33: 703-711. doi:10.1016/S0008-8846(02)01033-5.Search in Google Scholar

[72] Wagih, A. M., H. Z. El-Karmoty, M. Ebid and S. H. Okba. 2013. Recycled construction and demolition concrete waste as aggregate for structural concrete. HBRC Journal 9(3): 193-200. doi:10.1016/j.hbrcj.2013.08.007 Search in Google Scholar

[73] Evangelista, L. and J. de Brito. 2007. Mechanical behaviour of concrete made with fine recycled concrete aggregates. Cement and Concrete Composites 29: 397-401 10.1016/j.cemconcomp.2006.12.004Search in Google Scholar

[74] Radonjanin, V., M. Malešev, S. Marinković and A. E. S. Al Malty. 2013. Green recycled aggregate concrete. Construction and Building Materials 47: 1503-1511. doi:10.1016/j.conbuildmat.2013.06.076. Search in Google Scholar

[75] Kuosa, H. 2012. Reuse of recycled aggregates and other C&D wastes. Research report. Espoo: VTT Finland. Search in Google Scholar

[76] Van den Heede, Ph., N. Ringoot, A. Beirnaert, A. Van Brecht, E. Van den Brande, G. De Schutter and N. De Belie. 2016. Sustainable High Quality Recycling of Aggregates from Wasteto-Energy, Treated in a Wet Bottom Ash Processing Installation, for Use in Concrete Products. Materials 9(1): 9. doi:10.3390/ma9010009.Search in Google Scholar

[77] EN 206:2013. Concrete. Specification, performance, production and conformity. Search in Google Scholar

[78] EN 933-11:2009. Tests for geometrical properties of aggregates. Classification test for the constituents of coarse recycled aggregate. Search in Google Scholar

[79] DIN 4226-100:2002-02. Aggregates for concrete and mortar - Part 100: Recycled aggregates. DIN-Normenausschuss Bauwesen. Search in Google Scholar

[80] Schubert, S. and C. Hoffmann. 2011. Grundlagen für die Verwendung von Recyclingbeton mit Mischgranulat. [Bases for the use of recycled concrete with mixed granulate.] Final report of cemsuisse-Projekt 200602.Search in Google Scholar

[81] MPI. 2011. Population Projection for Vietnam 2009 - 2049. Hanoi: Ministry of Planning an Investment, General Statistics Office.Search in Google Scholar

[82] Haas, W., F. Krausmann, D. Wiedenhofer, and M. Heinz. 2015. How circular is the global economy?: An assessment of material flows, waste production, and recycling in the european union and the world in 2005. Journal of Industrial Ecology 19: 765-777.Search in Google Scholar

Received: 2017-4-13
Accepted: 2018-1-16
Published Online: 2017-12-29
Published in Print: 2017-12-20

© 2018

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/cass-2017-0011/html
Scroll to top button