Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Greaves, Ronda / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter

IMPACT FACTOR 2018: 3.638

CiteScore 2018: 2.44

SCImago Journal Rank (SJR) 2018: 1.191
Source Normalized Impact per Paper (SNIP) 2018: 1.205

See all formats and pricing
More options …
Volume 38, Issue 9


Quantitative PCR

Roman Jung / Krishna Soondrum / Michael Neumaier
Published Online: 2005-06-01 | DOI: https://doi.org/10.1515/CCLM.2000.120


The classic molecular biology methods like Northern or Southern blot analyse non-amplified DNA or RNA, but need large amounts of nucleic acids, in many instances from tissues or cells that are heterogeneous. In contrast, polymerase chain reaction (PCR)-based techniques allow us to obtain genetic information through the specific amplification of nucleic acid sequences starting with a very low number of target copies. These reactions are characterized by a logarithmic amplification of the target sequences i.e. increase of PCR copies followed by a plateau phase showing a rapid decrease to zero of copy number increment per cycle. Accordingly, the amount of specific DNA product at the end of the PCR run bears no correlation to the number of target copies present in the original specimen. However, many applications in medicine or research require quantification of the number of specific targets in the specimen. This has generated a rapidly increasing need for the development of quantitative PCR techniques. Prominent examples are the determination of viral load in blood specimens for the diagnosis of HIV or HCV infections, the determination of changes in gene dosage through amplification or deletion e.g. of MDR-1, erb-B2, c-myc or the loss of heterozygosity in general. Finally, the analysis of gene expression on the mRNA level does require quantitative approaches to reverse transcriptase PCR, e.g. for studies in morphogenesis or the profiling of cancer cells. Recent advances in technology allow detection of the increment per cycle of a specifically generated PCR product in “real-time mode”. Together with the new powerful methods to dissect heterogeneous tissues or fractionate bodily fluids, this now sets the stage for a detailed analysis not only of the genes and genetic changes within a single cell, but also of the use such cell makes of its genes e.g. in pharmacogenomics. Examples of recent developments of the technology and their applications will be given.

About the article

Published Online: 2005-06-01

Published in Print: 2000-09-18

Citation Information: Clinical Chemistry and Laboratory Medicine, Volume 38, Issue 9, Pages 833–836, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/CCLM.2000.120.

Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

P. Verderio, C. Orlando, C. Casini Raggi, and E. Marubini
The International Journal of Biological Markers, 2004, Volume 19, Number 1, Page 76
Yao Mianzhi and Nagendra P. Shah
Critical Reviews in Food Science and Nutrition, 2017, Volume 57, Number 5, Page 987
Yi Zhang, Zhenguo Wei, Yuan-Yuan Li, Yuhua Chen, Weide Shen, and Changde Lu
Analytical Biochemistry, 2009, Volume 394, Number 2, Page 202
Yong Liang, Feng Luo, Yan Lin, QunFang Zhou, and GuiBin Jiang
Carbon, 2009, Volume 47, Number 6, Page 1457
Catherine Y.S Cheung, Jie Chen, and Thomas K.H Chang
Journal of Pharmacological and Toxicological Methods, 2004, Volume 49, Number 2, Page 97
K Culmsee, A.D Gruber, G von Samson-Himmelstjerna, and I Nolte
Research in Veterinary Science, 2004, Volume 77, Number 3, Page 223
Peter Morin Nissom
Biologicals, 2007, Volume 35, Number 3, Page 211
Shu-Ching Shih and Lois E.H. Smith
Experimental and Molecular Pathology, 2005, Volume 79, Number 1, Page 14
Yongbaek Kim, Saad M Gharaibeh, Nancy L Stedman, and Tom P Brown
Journal of Virological Methods, 2002, Volume 102, Number 1-2, Page 1
Sahar F. Mahmoud, Alex L. Bezzerides, Rebecca Riba, Guey-Jen Lai, Peter V. Lovell, Yuko Hara, and David P. McCobb
Journal of Neuroscience Methods, 2002, Volume 115, Number 2, Page 189
Petra Wolffs, Börje Norling, and Peter Rådström
Journal of Microbiological Methods, 2005, Volume 60, Number 3, Page 315
Hiroshi Sato, Kazue Ozawa, Keiko Yonemura, Shingo Iwata, Masako Ono, Shinji Uemoto, Satoshi Kaihara, and Koichi Tanaka
Clinica Chimica Acta, 2003, Volume 328, Number 1-2, Page 147
Michael Adler, Ron Wacker, and Christof M. Niemeyer
Biochemical and Biophysical Research Communications, 2003, Volume 308, Number 2, Page 240
R.Bruce David, Gaik Bee Lim, Karen M Moritz, Irene Koukoulas, and E.Marelyn Wintour
Molecular and Cellular Endocrinology, 2002, Volume 188, Number 1-2, Page 207
Shu-Ching Shih, Gregory S. Robinson, Carole A. Perruzzi, Alfonso Calvo, Kartiki Desai, Jeffery E. Green, Iqbal U. Ali, Lois E.H. Smith, and Donald R. Senger
The American Journal of Pathology, 2002, Volume 161, Number 1, Page 35
Maud Barbado, Laurence Preisser, Michele Boisdron-Celle, Veronique Verriele, Gerard Lorimier, Erick Gamelin, and Alain Morel
Cancer Letters, 2006, Volume 242, Number 2, Page 168
Claudia Casini Raggi, Paolo Verderio, Mario Pazzagli, Ettore Marubini, Lisa Simi, Pamela Pinzani, Angelo Paradiso, and Claudio Orlando
Clinical Chemistry and Laboratory Medicine (CCLM), 2005, Volume 43, Number 5
Irene L. Tan, Mark Pierre S. Dimamay, Corazon C. Buerano, Jhoe Anthony R. Alfon, Carol Z. Tanig, Ronald R. Matias, and Filipinas F. Natividad
Journal of Medical Virology, 2010, Volume 82, Number 12, Page 2053
Lev N. Neretin, Axel Schippers, Annelie Pernthaler, Knut Hamann, Rudolf Amann, and Bo Barker Jørgensen
Environmental Microbiology, 2003, Volume 5, Number 8, Page 660
Joong-Wook Park and David E. Crowley
Journal of Environmental Monitoring, 2010, Volume 12, Number 4, Page 985
D. Donia, E. Bonanni, L. Diaco, and M. Divizia
Letters in Applied Microbiology, 2010, Volume 50, Number 2, Page 237
Jeffrey S. Ross
Advances in Anatomic Pathology, 2009, Volume 16, Number 4, Page 204
Zhiwu Li, Jennifer L. Hansen, Ying Liu, Robert S. Zemetra, and Philip H. Berger
Plant Molecular Biology Reporter, 2004, Volume 22, Number 2, Page 179
Wendell W. Weber
Paediatric Drugs, 2001, Volume 3, Number 12, Page 863
Sarika Mehra and Wei-Shou Hu
Biotechnology and Bioengineering, 2005, Volume 91, Number 7, Page 848
R. Jardi, F. Rodriguez, M. Buti, X. Costa, M. Cotrina, A. Valdes, R. Galimany, R. Esteban, and J. Guardia
Journal of Viral Hepatitis, 2001, Volume 8, Number 6, Page 465
I.V. Foulds, A. Granacki, C. Xiao, U.J. Krull, A. Castle, and P.A. Horgen
Journal of Applied Microbiology, 2002, Volume 93, Number 5, Page 825
I.M. Mackay
Clinical Microbiology and Infection, 2004, Volume 10, Number 3, Page 190
R. Narath, T. Lörch, M. Rudas, and P. F. Ambros
Cytometry Part B: Clinical Cytometry, 2004, Volume 57B, Number 1, Page 15
Elizabeth Baker, Lyn Hinton, David F. Callen, Meryl Altree, Angus Dobbie, Helen J. Eyre, Grant R. Sutherland, Elizabeth Thompson, Peter Thompson, Erica Woollatt, and Eric Haan
American Journal of Medical Genetics, 2002, Volume 107, Number 4, Page 285

Comments (0)

Please log in or register to comment.
Log in