Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year


IMPACT FACTOR 2016: 3.432

CiteScore 2016: 2.21

SCImago Journal Rank (SJR) 2016: 1.000
Source Normalized Impact per Paper (SNIP) 2016: 1.112

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 39, Issue 7 (Aug 2001)

Issues

Models for Combining Random and Systematic Errors. Assumptions and Consequences for different Models

Per Hyltoft Petersen / Dietmar Stöckl / James O. Westgard / Sverre Sandberg / Kristian Linnet / Linda Thienpont
Published Online: 2005-06-01 | DOI: https://doi.org/10.1515/CCLM.2001.094

Abstract

A series of models for handling and combining systematic and random variations/errors are investigated in order to characterize the different models according to their purpose, their application, and discuss their flaws with regard to their assumptions. The following models are considered 1. linear model, where the random and systematic elements are combined according to a linear concept (TE=|bias|+z·σ), where TE is total error, bias is the systematic error component, σ is the random error component (standard deviation or coefficient of variation) and z is the probability factor; 2. squared model with two sub-models of which one is the classical statistical variance model and the other is the GUM (Guide to Uncertainty in Measurements) model for estimating uncertainty of a measurement; 3. combined model developed for the estimation of analytical quality specifications according to the clinical consequences (clinical outcome) of errors.

The consequences of these models are investigated by calculation of the functions of transformation of bias into imprecision according to the assumptions and model calculations. As expected, the functions turn out to be rather different with considerable consequences for these types of transformations.

It is concluded that there are at least three models for combining systematic and random variation/errors, each created for its own specific purpose, with its own assumptions and resulting in considerably different results. These models should be used according to their purposes.

About the article

Published Online: 2005-06-01

Published in Print: 2001-08-15


Citation Information: Clinical Chemistry and Laboratory Medicine, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/CCLM.2001.094.

Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
E. Rozet, R.D. Marini, E. Ziemons, B. Boulanger, and Ph. Hubert
Journal of Pharmaceutical and Biomedical Analysis, 2011, Volume 55, Number 4, Page 848
[2]
Andrew D. Richardson, D. Bryan Dail, and D.Y. Hollinger
Agricultural and Forest Meteorology, 2011, Volume 151, Number 9, Page 1287
[3]
E. Rozet, R.D. Marini, E. Ziemons, Ph. Hubert, W. Dewé, S. Rudaz, and B. Boulanger
TrAC Trends in Analytical Chemistry, 2011, Volume 30, Number 5, Page 797
[4]
Rainer Haeckel and Werner Wosniok
LaboratoriumsMedizin, 2007, Volume 31, Number 2, Page 87
[6]
James O. Westgard
Clinical Chemistry and Laboratory Medicine, 2010, Volume 48, Number 1
[7]
Jesper Kristiansen
Clinical Chemistry and Laboratory Medicine, 2001, Volume 39, Number 10
[9]
James O. Westgard
Accreditation and Quality Assurance, 2004, Volume 10, Number 1-2, Page 10

Comments (0)

Please log in or register to comment.
Log in