Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Greaves, Ronda / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter

IMPACT FACTOR 2018: 3.638

CiteScore 2018: 2.44

SCImago Journal Rank (SJR) 2018: 1.191
Source Normalized Impact per Paper (SNIP) 2018: 1.205

See all formats and pricing
More options …
Volume 42, Issue 12


Hematopoietic cytokines as tumor markers

Barbara Mroczko / Maciej Szmitkowski
Published Online: 2005-06-01 | DOI: https://doi.org/10.1515/CCLM.2004.253


Stem cell factor (SCF), interleukin 3 (IL-3), granulocyte-macrophage-colony stimulating factor (GM-CSF), granulocyte-colony stimulating factor (G-CSF) and macrophage-colony stimulating factor (M-CSF) are members of a group of glycoproteins called hematopoietic cytokines (HCs). These cytokines regulate the growth and differentiation of hematopoietic progenitor cells and functionally activate mature neutrophils or macrophages. The effect of HCs is not limited to bone marrow cells. Some studies have shown that HCs can also stimulate the proliferation of non-hematopoietic cells. The receptors for HCs have been detected in cancer cell lines, and stimulation of HCs receptors induced proliferation of tumor cells. Moreover, some investigations have shown HC mRNA expression in these cell lines and recent studies have demonstrated that HCs can stimulate tumor progression. Several cells of malignant tumors have been observed to secrete large amounts of HCs and increased concentrations of HCs have been found in the sera of cancer patients. There are a number of situations in which the measurement of HCs may provide clinically useful information, particularly regarding prognosis and response to treatment. In this paper we discuss the results of studies that have examined the potential use of HCs as tumor markers.

Keywords: hematopoietic cytokines; tumor markers


  • 1

    Bence Jones H. Papers on chemical pathology – lecture III. Lancet 1847; 2:88–92.CrossrefGoogle Scholar

  • 2

    Whicher JT, Banks RE. Cytokines as tumour markers. Scand J Clin Lab Invest 1995; 55:122–44.CrossrefGoogle Scholar

  • 3

    Dunlop RJ, Campbell CW. Cytokines and advanced cancer. J Pain Symptom Manage 2000; 20:214–32.CrossrefGoogle Scholar

  • 4

    Cohen S, Bigazzi PE, Yoshida T. Similarities of T cell function in cell-mediated immunity and antibody production. Cell Immunol 1974; 12:150–9.CrossrefGoogle Scholar

  • 5

    Berdel WE, Danhauser RS, Oberberg D, Zafferani M. Effects of hematopoietic growth factors on malignant nonhematopoietic cells. Semin Oncol 1992; 19:41–5.Google Scholar

  • 6

    Avalos BR, Gasson JC, Hedvat C, Quan SG, Baldwin GC, Weisbart RH, et al. Human granulocyte colony-stimulating factor: biological activities and receptor characterization on hematopoietic cells and small cell lung cancer lines. Blood 1990; 75:851–7.Google Scholar

  • 7

    Miyagawa K, Chiba S, Shibuya K, Piao YK, Matsuki S, Yokota J, et al. Frequent expression of receptors for granulocyte-macrophage colony-stimulating factor on human nonhematopoietic tumor cell lines. J Cell Physiol 1990; 143:483–7.CrossrefGoogle Scholar

  • 8

    Turner AM, Zsebo KM, Martin F. Nonhematopoietic tumor cell lines express stem cell factor and display c-kit receptors. Blood 1992; 80:374–80.Google Scholar

  • 9

    Tani K, Ozawa K, Ogura H, Shimane M., Tsuruta T, Yokota J, et al. Expression of granulocyte and granulocyte-macrophage colony stimulating factors by human non-hematopoietic tumor cells. Growth Factors 1990; 3:325–31.CrossrefGoogle Scholar

  • 10

    Pei XH, Nakanishi Y, Takayama K, Bai F, Hara N. Granulocyte, granulocyte-macrophage, and macrophage colony-stimulating factors can stimulate the invasive capacity of human lung cancer cells. Br J Cancer 1999; 79:40–6.CrossrefGoogle Scholar

  • 11

    Suzuki M, Ohwada M, Sato I. Serum level of macrophage colony-stimulating factor as a marker for gynecologic malignancies. Oncology 1995; 52:128–33.CrossrefGoogle Scholar

  • 12

    McDermott RS, Deneux L, Mosseri V, Vedrenne J, Clough K, Fourquet A, et al. Circulating macrophage colony-stimulating factor as a marker of tumor progression. E Cytokine Network 2002; 13:121–7.Google Scholar

  • 13

    Smith MA, Court EL, Smith JG. Stem cell factor: laboratory and clinical aspects. Blood Rev 2001; 15:191–7.CrossrefGoogle Scholar

  • 14

    Glaspy J. Clinical applications of stem cell factor. Curr Opin Hemat 1996; 3:223–9.CrossrefGoogle Scholar

  • 15

    Molineux G, Migdalska A, Szmitkowski M, Zsebo K, Dexter TM. The effects on hematopoiesis of recombinant stem cell factor (ligand for c-kit) administered in vivo to mice either alone or in combination with granulocyte colony-stimulating factor. Blood 1991; 78:961–6.Google Scholar

  • 16

    Natali PG, Nicotra MR, Sures I, Mottolese M, Botti C, Ullrich A. Breast cancer is associated with loss of the c-kit oncogene product. Int J Cancer 1992; 52:713–7.CrossrefGoogle Scholar

  • 17

    Rygaard K, Nakamura T, Spang-Thomsen M. Expression of the proto-oncogenes c-met and c-kit and their ligands, hepatocyte growth factor/scatter factor and stem cell factor in SCLC cell lines and xenografts. Br J Cancer 1993; 67:37–46.CrossrefGoogle Scholar

  • 18

    Cohen PS, Chan JP, Lipunskaya M, Biedler JL, Seeger RC. Expression of stem cell factor and c-kit in human neuroblastoma. Blood 1994; 84:3465–72.Google Scholar

  • 19

    Inoue M, Kyo S, Fujita M, Enomoto T, Kondoh G. Coexpression of the c-kit receptor and the stem cell factor in gynecological tumors. Cancer Res 1994; 54:3049–53.Google Scholar

  • 20

    Savarese DM, Valiński H, Quesenberry P, Savarese T. Expression and function of colony-stimulating factors and their receptors in human prostate carcinoma cell lines. Prostate 1998; 34:80–91.CrossrefGoogle Scholar

  • 21

    Strohmeyer T, Reese D, Press M. Expression of c-kit proto-oncogene and its ligand stem cell factor (SCF) in normal and malignant human testicular tissue. 1995;153:511–5.Google Scholar

  • 22

    Toyota M, Hinoda Y, Takaoka A, Makiguchi Y, Takahashi T, Iton F, et al. Expression of c-kit and kit ligand in human colon carcinoma cells. Tumor Biol 1993; 14:295–302.CrossrefGoogle Scholar

  • 23

    Lahm H, Amstad P, Yilmaz A, Borbenyi Z, Wyniger J, Fischer JR, et al. Interleukin 4 down-regulates expression of c-kit and autocrine stem cell factor in human colorectal carcinoma cells. Cell Growth Differ 1995; 6:1111–8.Google Scholar

  • 24

    Hassan S, Kinoshita Y, Kawanami Ch, Kishi K, Matsushima Y, Ohashi A, et al. Expression of proto-oncogene c-kit and its ligand stem cell factor (SCF) in gastric carcinoma cell lines. Dig Dis Sci 1998; 43:8–14.CrossrefGoogle Scholar

  • 25

    Mroczko B, Szmitkowski M, Niklinski J. Stem cell factor and granulocyte-macrophage-colony stimulating factor as candidates for tumour markers for non-small-cell lung cancer. Clin Chem Lab Med 1999; 37:959–62.CrossrefGoogle Scholar

  • 26

    Mroczko B, Szmitkowski M, Okulczyk B. Hematopoietic growth factors in colorectal cancer patients. Clin Chem Lab Med 2003; 41:646–51.CrossrefGoogle Scholar

  • 27

    Hsu SM, Hsu PL. Autocrine and paracrine functions of cytokines in malignant lymphomas. Biomed Pharmacother 1994; 48:433–44.CrossrefGoogle Scholar

  • 28

    Nachbaur D, Denz H, Zwierzina H, Schmalzl F, Huber H. Stimulation of colony formation of various human carcinoma cell lines by rhGM-CSF and rhIL-3. Cancer Lett 1990; 50:197–201.Google Scholar

  • 29

    Berdel WE, Danhauser-Riedl S, Stienhauser G. Various human hematopoietic growth factors (interleukin-3, GM-CSF, G-CSF) stimulate clonal growth of nonhematopoietic tumor cells. Blood 1989; 73:80–3.Google Scholar

  • 30

    Nemunaitis J. A comparative review of colony-stimulating factors. Drugs 1997; 54:709–29.CrossrefGoogle Scholar

  • 31

    Dame JB, Chegini N, Christensen RD, Juul SE. The effect of interleukin-1β and tumor necrosis factor-α (TNF-α) on granulocyte macrophage-colony stimulating factor (GM-CSF) production by neuronal precursor cells. Eur Cytokine Network 2002; 13:128–33.Google Scholar

  • 32

    Baldwin GC, Gasson JC, Kaufman SE, Quan SG, Williams RE, Avalos BR, et al. Nonhematopoietic tumor cells express functional GM-CSF receptors. Blood 1989; 73:1033–7.Google Scholar

  • 33

    Baba M, Hasegawa H, Nakayabu M. Establishment and characteristics of a gastric cancer cell line (HuGC-OOHIRA) producing high levels G-CSF, GM-CSF, and IL-6: the presence of autocrine growth control by G-CSF. Am J Hematol 1995; 49:207–16.CrossrefGoogle Scholar

  • 34

    Rokhlin OW, Griebling TL, Karassina NV, Raines MA, Cohen MB. Human prostate carcinoma cell lines secrete GM-CSF and express GM-CSF-receptor on their cell surface. Anticancer Res 1996; 16:557–64.Google Scholar

  • 35

    Dedhar S, Gaboury L, Galloway P, Eaves C. Human granulocyte-macrophage colony-stimulating factor is a growth factor active on a variety of cell types of nonhematopoietic origin. Proc Natl Acad Sci USA 1988; 85:9253–7.CrossrefGoogle Scholar

  • 36

    Mizuno K, Sone S, Orino E. Autonomous expressions of cytokine genes by human lung cancer cells and their paracrine regulation. Jpn J Cancer 1994; 85:179–86.CrossrefGoogle Scholar

  • 37

    Armstrong CA, Tara DC, Hart CE, Kock A, Luger TA, Ansel JC. Heterogeneity of cytokine production by human malignant melanoma cells. Exp Dermatol 1992; 1:37–45.CrossrefGoogle Scholar

  • 38

    Trutmann M, Terracciano L, Noppen C, Kloth J, Kaspar M, Peterli R, et al. GM-CSF gene expression and protein production in human colorectal cell lines and clinical tumor specimens. Int J Cancer 1998; 77:378–85.CrossrefGoogle Scholar

  • 39

    Kohn EC, Hollister GH, Dipersio JD, Wahl S, Liotta LA, Schiffman E. Granulocyte-macrophage colony-stimulating factor induces melanoma-cell migration. Int J Cancer 1993; 53:968–72.CrossrefGoogle Scholar

  • 40

    Singh RK, Gutman M, Radinsky R. Heterogeneity of cytokine and growth factor gene expression in human melanoma cells with different metastatic potentials. J Interferon Cytokine Res 1995; 15:81–7.CrossrefGoogle Scholar

  • 41

    Sabourin CL, Wang QS, Mallery SR, Nicholson R, Gopalakrishnan R, Lang JS, et al. Analysis of cytokine gene expression in squamous cell carcinoma of the head and neck. Int J Oncol 1996; 8:49–56.Google Scholar

  • 42

    Pisa P, Halapi E, Pisa EK, Gerdin E, Hising C, Bucht A, et al. Selective expression of interleukin 10, interferon gamma, and granulocyte-macrophage colony-stimulating factor in ovarian cancer biopsies. Proc Natl Acad Sci USA 1992; 89:7708–12.Google Scholar

  • 43

    Hill AD, Redmond HP, Austin OM, Grace PA, Bouchier-Hayes D. Granulocyte macrophage colony-stimulating factor inhibits tumour growth. Br J Cancer 1993; 80:1543–6.Google Scholar

  • 44

    Young MR, Young ME, Wright MA. Stimulation of immune-suppressive bone marrow cells by colony-stimulating factors. Exp Hematol 1990; 18:806–11.Google Scholar

  • 45

    Young MR, Lozano Y, Coogan M. Stimulation of the metastasis properties of Lewis-lung-carcinoma cells by autologous granulocyte macrophage colony-stimulating factor. Int J Cancer 1992; 50:628–34.CrossrefGoogle Scholar

  • 46

    Takeda K, Hatakeyama K, Tsuchiya Y. A correlation between GM-CSF gene expression and metastases in murine tumors. Int J Cancer 1991; 47:413–20.CrossrefGoogle Scholar

  • 47

    Mroczko B, Szmitkowski M, Okulczyk B, Piotrowski Z. Granulocyte-macrophage colony-stimulating factor in patients with colorectal cancer. Folia Histochem Cytobiol 2001; 39(Suppl 2):110–1.Google Scholar

  • 48

    Sawyers CL, Golde DM, Quan S. Production of granulocyte-macrophage colony stimulating factor in two patients with lung cancer, leukocytosis, and eosinophilia. Cancer 1992; 69:1342–6.CrossrefGoogle Scholar

  • 49

    Screenan C, Osiovich H. Myeloid colony-stimulating factors. Arch Pediatr Adolesc 1999; 153:984–8.CrossrefGoogle Scholar

  • 50

    Baba M, Kaito M, Hasegawa H, Nakayabu M, Yoshida Y, Uda Y. Establishment and characterization of a new human thyroid anaplastic cancer cell line that produces human colony-stimulating factor. Mie Med J 1991; 41:155–62.Google Scholar

  • 51

    Furihata M, Sonobe H, Ohtsuki Y, Enzan H, Tokuoka H, Nakanuma Y. An immunohistochemical study on a case of granulocyte colony-stimulating factor producing gall-bladder carcinoma. Pathol Int 1999; 49:1010–3.CrossrefGoogle Scholar

  • 52

    Hirasawa K, Kitamura T, Oka T, Matsushita H. Bladder tumor producing granulocyte colony-stimulating factor and parathyroid hormone related protein. J Urol 2002; 167:2130–6.CrossrefGoogle Scholar

  • 53

    Uematsu T, Tsuchie K, Ukai K, Kimoto E, Funakawa T, Mizuno R. Granulocyte colony-stimulating factor produced by pancreatic carcinoma. Int J Pancreat 1996; 19:135–9.Google Scholar

  • 54

    Sugimoto M, Kajimura M, Hanai H, Shirai N, Tanioka F, Kaneko E. G-CSF-producing gastric anaplastic large cell lymphoma complicating esophageal cancer. Dig Dis Sci 1999; 44:2035–8.CrossrefGoogle Scholar

  • 55

    Uemura Y, Nakata H, Kobayashi M, Harada R, Asahi Y, Taguchi H. Regulation of granulocyte colony-stimulating factor and parathyroid hormone-related protein production in lung carcinoma cell line OKa-C-1. Jpn J Cancer Res 2000; 91:911–7.CrossrefGoogle Scholar

  • 56

    Logan TF, Gooding W, Kirkwood JM, Shadduck RK. Tumor necrosis factor administration is associated with increased endogenous production of M-CSF and G-CSF but not GM-CSF in human cancer. Exp Hematol 1996; 24:49–53.Google Scholar

  • 57

    Tachibana M, Miyakawa A, Tazaki H. Autocrine growth of transitional cell carcinoma of the bladder induced by granulocyte-colony stimulating factor. Cancer Res 1995; 55:34–8.Google Scholar

  • 58

    Mroczko B, Szmitkowski M, Okulczyk B. Granulocyte colony-stimulating factor (G-CSF) and macrophage colony-stimulating factor (M-CSF) in colorectal cancer patients. Clin Chem Lab Med 2002; 40:351–5.CrossrefGoogle Scholar

  • 59

    Price LK, Choi HU, Rosenberg L, Stanley ER. The predominant form of secreted colony stimulating factor-1 is a proteoglycan. J Biol Chem 1992; 267:2190–9.Google Scholar

  • 60

    Rallidis L, Thomaidis KP, Zolindaki MG, Velissaridou AH, Papasteriadis EG. Elevated concentrations of macrophage colony stimulating factor predict worse in-hospital prognosis in unstable angina. Heart 2001; 86:92–8.CrossrefGoogle Scholar

  • 61

    Roth P, Stanley ER. The biology of CSF-1 and its receptor. Curr Top Microbiol Immunol 1992; 181:141–67.Google Scholar

  • 62

    Kacinski BM, Chambers SK, Stanley ER, Carter D, Tseng P, Scata KA, et al. The cytokine CSF-1 (M-CSF) expressed by endometrial carcinomas in vivo and in vitro, may also be a circulating tumour marker of neoplastic disease activity in endometrial carcinoma patients. Int J Radiat Oncol Biol Physics 1990; 19:619–26.CrossrefGoogle Scholar

  • 63

    Kacinski BM, Stanley ER, Carter D, Chambers JT, Chambers SK, Kohorn EI, et al. Circulating levels of CSF-1 (M-CSF), a lymphohematopoietic cytokine, may be a useful marker of disease status in patients with malignant ovarian neoplasms. Int J Radiat Oncol Biol Physics 1989; 17:159–64.CrossrefGoogle Scholar

  • 64

    Scholl SM, Lidereau R, Rochefordiere A, Cohen-Solal Le-Nir C, Mosseri V, Nogues C, et al. Circulating levels of the macrophage colony stimulating factor CSF-1 in primary and metastatic breast cancer patients. Breast Cancer Res Treat 1996; 39:275–83.Google Scholar

  • 65

    Hamilton JA, Whitty GA, Stanton H, Meager A. Effects of macrophage-colony stimulating factor on human monocytes: induction of expression of urokinase-type plasminogen activator, but not of secreted prostaglandin E2, interleukin-6, interleukin-1 or tumor necrosis factor-alpha. J Leukoc Biol 1993; 53:707–14.Google Scholar

  • 66

    Yee LS, Liu L. The constitutive production of colony stimulating factor 1 by invasive human breast cancer cells. Anticancer Res 2000; 20:4379–84.Google Scholar

  • 67

    Chambers SK, Wang Y, Gertz RE, Kacinski BM. Macrophage colony-stimulating factor mediates invasion of ovarian cancer cells through urokinase. Cancer Res 1995; 55:1578–85.Google Scholar

  • 68

    Mancino AT, Klimberg VS, Yamamoto M, Manolagas SC, Abe E. Breast cancer increases osteoclastogenesis by secreting M-CSF and upregulating RANKL in stromal cells. J Surg Res 2001; 100:18–24.CrossrefGoogle Scholar

About the article

Corresponding author: M. Szmitkowski, MD, PhD, Department of Biochemical Diagnostics, Medical Academy, M. Sklodowska-Curie 24A, 15-276 Bialystok, Poland Phone: +48-85-7468587, Fax: +48-85-7468585,

Received: 2003-12-16

Accepted: 2004-09-07

Published Online: 2005-06-01

Published in Print: 2004-12-01

Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), Volume 42, Issue 12, Pages 1347–1354, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/CCLM.2004.253.

Export Citation

©2004 by Walter de Gruyter Berlin New York.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Mehmet Akdoğan and Mustafa Yöntem
Online Türk Sağlık Bilimleri Dergisi, 2018
Oncology Letters, 2014, Volume 8, Number 3, Page 1112
Qiaowei Zheng, Xueqian Li, Xiaoliang Cheng, Ting Cui, Yingcheng Zhuo, Wenbin Ma, Xue Zhao, Peipei Zhao, Xuanlin Liu, and Weiyi Feng
Tumor Biology, 2017, Volume 39, Number 2, Page 101042831769223
Claudia M. Gutschalk, Archana K. Yanamandra, Nina Linde, Alice Meides, Sofia Depner, and Margareta M. Mueller
Cancer Medicine, 2013, Volume 2, Number 2, Page 117
Daniel Buergy, Frederik Wenz, Christoph Groden, and Marc A. Brockmann
International Journal of Cancer, 2012, Volume 130, Number 12, Page 2747
Yuanyuan Ma, Dongming Liang, Jian Liu, Karol Axcrona, Gunnar Kvalheim, Karl-Erik Giercksky, Jahn M. Nesland, and Zhenhe Suo
Tumor Biology, 2012, Volume 33, Number 4, Page 967
Luciano S. Hammes, Rajeshwar Rao Tekmal, Paulo Naud, Maria Isabel Edelweiss, Nameer Kirma, Philip T. Valente, Kari J. Syrjänen, and João Sabino Cunha-Filho
Gynecologic Oncology, 2008, Volume 110, Number 3, Page 445
Barbara Mroczko, Magdalena Groblewska, Urszula Wereszczynska-Siemiatkowska, Bogusław Kedra, Marzena Konopko, and Maciej Szmitkowski
Clinica Chimica Acta, 2006, Volume 371, Number 1-2, Page 143
John R. Wingard and Mohamed Elmongy
Critical Reviews in Oncology/Hematology, 2009, Volume 72, Number 2, Page 144
Eva Freisinger, Christopher Cramer, Xiujin Xia, Subramanyam N. Murthy, Douglas P. Slakey, Ernest Chiu, Edward R. Newsome, Eckhard U. Alt, and Reza Izadpanah
Journal of Cellular Physiology, 2010, Volume 225, Number 3, Page 888
Kazuaki Chikamatsu, Goro Takahashi, Koichi Sakakura, Soldano Ferrone, and Keisuke Masuyama
Head & Neck, 2011, Volume 33, Number 2, Page 208
Karsten Münstedt, Andreas Hackethal, Kosai Eskef, Igor Hrgovic, and Folker E. Franke
Archives of Gynecology and Obstetrics, 2010, Volume 282, Number 3, Page 301
L. M. Skivka, G. V. Gorbik, O. G. Fedorchuk, and V. V. Pozur
Cytology and Genetics, 2009, Volume 43, Number 4, Page 283
Jung Sub Song, So Young Kim, Hyang Jeong Jo, Kang Kyoo Lee, Jeong Hyun Shin, Seong Nam Shin, Dong Kim, Seong Hoon Park, Young Jin Lee, Chang Bo Ko, Mi Kung Lee, Soon Ho Choi, Jong Hoon Jeong, Jung Hyun Park, Hui Jung Kim, Hak Ryul Kim, Eun Taik Jeong, and Sei Hoon Yang
Tuberculosis and Respiratory Diseases, 2009, Volume 66, Number 6, Page 444

Comments (0)

Please log in or register to comment.
Log in