Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year


IMPACT FACTOR 2016: 3.432

CiteScore 2016: 2.21

SCImago Journal Rank (SJR) 2016: 1.000
Source Normalized Impact per Paper (SNIP) 2016: 1.112

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 42, Issue 12 (Dec 2004)

Issues

Declines in serum free and bound choline concentrations in humans after three different types of major surgery

Yesim Ozarda Ilcol
  • Department of Biochemistry and Clinical Biochemistry, Uludag University Medical School, Bursa, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gurkan Uncu / Suna Goren
  • Department of Anesthesiology and Reanimation, Uludag University Medical School, Bursa, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Erkan Sayan
  • Department of Anesthesiology and Reanimation, Uludag University Medical School, Bursa, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ismail H. Ulus
  • Department of Pharmacology and Clinical Pharmacology, Uludag University Medical School, Bursa, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2005-06-01 | DOI: https://doi.org/10.1515/CCLM.2004.259

Abstract

We examined the changes in circulating choline status in humans in response to major surgery by measuring serum free and phospholipid-bound choline concentrations before, during and 1–72h after total abdominal hysterectomy, off-pump coronary artery graft surgery or brain tumor surgery. Preoperatively, the mean serum free and phospholipid-bound choline concentrations in patients scheduled for abdominal hysterectomy (n=26), off-pump coronary artery grafting surgery (n=34) or brain tumor surgery (n=24) were 12.3±0.5, 12.1±0.4 and 11.4±0.4μmol/l, and 2495±75, 2590±115 and 2625±80μmol/l, respectively. Serum free choline and phospholipid-bound choline concentrations decreased from these baseline values to 8.8±0.7 (p<0.001), 8.8±0.5 (p<0.001) and 8.2±0.4μmol/l (p<0.001), and 2050±108 (p<0.001), 2166±59 (p<0.001) and 1884±104μmol/l (p<0.001) at 1h after hysterectomy, off-pump bypass graft surgery or brain tumor surgery, respectively. They remained at these low levels for 24h and then gradually increased towards the preoperative values at 48–72h postoperatively. Serum cortisol increased postoperatively in all surgical patients for 24h and its levels were inversely correlated with serum free and bound choline concentrations. These results show that circulating free and bound choline concentrations decrease for 72h after total abdominal hysterectomy, off-pump coronary artery graft surgery or brain tumor surgery in humans.

Keywords: bound choline; brain surgery; cortisol; free choline; hysterectomy; surgical stress

References

  • 1

    Blusztajn JK. Choline, a vital amine. Science 1998; 28:794–5.CrossrefGoogle Scholar

  • 2

    Loffelholz K. Brain choline has a typical precursor profile. J Physiol Paris 1998; 92:235–9.CrossrefGoogle Scholar

  • 3

    Zeisel SH. Choline: an essential nutrient for humans. Nutrition 2000; 16:669–71.CrossrefGoogle Scholar

  • 4

    Sandage BW Sabounjian L, White R, Wurtman RJ. Choline citrate may enhance athletic performance. Physiologist 1992; 5:236.Google Scholar

  • 5

    Buchman AL, Jenden D, Roch M. Plasma free, phospholipid-bound and urinary free choline all decrease during a marathon run and may be associated with impaired performance. J Am Coll Nutr 1999; 18:598–601.CrossrefGoogle Scholar

  • 6

    Buchman AL, Sohel M, Brown M, Jenden DJ, Ahn C, Roch M, et al. Verbal and visual memory improve after choline supplementation in long-term parenteral nutrition: a pilot study. JPEN J Parenter Enteral Nutr 200;25:30–5.Google Scholar

  • 7

    Buchman AL, Ament ME, Sohel M, Dubin M, Jenden DJ, Roch M, et al. Choline deficiency causes reversible hepatic abnormalities in patients receiving parenteral nutrition: proof of a human choline requirement: a placebo-controlled trial. JPEN J Parenter Enteral Nutr 2001; 25:260–8.CrossrefGoogle Scholar

  • 8

    Zeisel SH, Da Costa KA, Franklin PD, Alexander EA, Lamont JT, Sheard NF, et al. Choline, an essential nutrient for humans. FASEB J 1991; 5:2093–8.Google Scholar

  • 9

    Stoll AL, Renshaw PF, DeMicheli E, Wurtman RJ, Cohen BM. Choline ingestion increases the resonance of choline-containing compounds in human brain. Biol Psychiatry 1995; 37:170–4.CrossrefGoogle Scholar

  • 10

    Wurtman RJ, Regan M, Ulus I, Yu L. Effect of oral CDP-choline on plasma choline and uridine levels in humans. Biochem Pharmacol 2000; 60:989–92.CrossrefGoogle Scholar

  • 11

    Lopez G.-Coviella I, Agut J, Savci V, Ortiz JA, Wurtman RJ. Evidence that 5′-cytidine diphosphocholine can affect brain phospholipid composition by increasing choline and cytidine plasma levels. J Neurochem 1995; 65:889–94.CrossrefGoogle Scholar

  • 12

    Bierkamper GG, Goldberg AM. Release of acetylcholine from the vascular perfused rat phrenic nerve-hemidiaphragm. Brain Res 1980; 202:234–7.Google Scholar

  • 13

    Meyer EM, Baker SP. Effects of choline augmentation on acetylcholine synthesis and release in rat minces. Life Sci 1986; 39:1307–15.CrossrefGoogle Scholar

  • 14

    Ulus IH, Wurtman RJ, Mauron C, Blusztajn JK. Choline increases acetylcholine release and protects against the stimulation-induced decrease in phosphatide levels within membranes of rat corpus striatum. Brain Res 1989; 484:217–27.Google Scholar

  • 15

    Buyukuysal RL, Ulus IH, Aydin S, Kiran BK. 3,4-Diaminopyridine and choline increase in vivo acetylcholine release in rat striatum. Eur J Pharmacol 1995; 28:179–85.CrossrefGoogle Scholar

  • 16

    Kopf SR, Buchholzer ML, Hilgert M, Löffelholz, K, Klein J. Glucose plus choline improve passive avoidance behaviour and increase hippocampal acetylcholine release in mice. Neuroscience 2001; 103:365–75.CrossrefGoogle Scholar

  • 17

    Ilcol YO, Gurun MS, Taga Y, Ulus IH. Choline increases serum insulin in rat when injected intraperitoneally and augments basal and stimulated acetylcholine release from the rat minced pancreas in vitro. Eur J Biochem 2003; 270:991–9.Google Scholar

  • 18

    Ulus IH, Wurtman RJ. Choline administration: activation of tyrosine hydroxylase in dopaminergic neurons of rat brain. Science 1976; 194:1060–1.CrossrefGoogle Scholar

  • 19

    Ulus IH, Hirsch MJ, Wurtman RJ. Trans-synaptic induction of adrenomedullary tyrosine hydroxylase activity by choline: evidence that choline administration can increase cholinergic transmission. Proc Natl Acad Sci USA 1977; 74:798–800.CrossrefGoogle Scholar

  • 20

    Ulus IH, Scally H, Wurtman RJ. Enhancement by choline of the induction of tyrosine hydroxylase by phenoxybenzamine, 6-hydroxydopamine, insulin or exposure to cold. J Pharmacol Exp Ther 1978; 204:676–82.Google Scholar

  • 21

    Ulus IH, Ozyurt G, Korfali E. Decreased serum choline concentrations in humans after surgery, childbirth, and traumatic head injury. Neurochem Res 1998; 23:727–32.CrossrefGoogle Scholar

  • 22

    Ilcol YO, Ozyurt G, Kilicturgay S, Uncu G, Ulus IH. The decline in serum choline concentration in humans during and after surgery is associated with the elevation of cortisol, adrenocorticotropic hormone, prolactin and β-endorphin concentrations. Neurosci Lett 2002; 324:41–4.Google Scholar

  • 23

    Ozarda Ilcol Y, Uncu G, Ulus IH. Free and phospholipid-bound choline concentrations in serum during pregnancy, after delivery and in newborns. Arch Physiol Biochem 2002; 110:393–9.CrossrefGoogle Scholar

  • 24

    Ilcol YO, Yilmaz Z, Ulus IH. Serum free and phospholipid-bound choline decrease after surgery and methylprednisolone administration in dogs. Neurosci Lett 2003; 339:195–8.Google Scholar

  • 25

    Wang FL, Haubrich DL. A simple, sensitive and specific assay for free choline in plasma. Anal Biochem 1975; 63:195–201.CrossrefGoogle Scholar

  • 26

    Takayama M, Itoh S, Nagasaki T, Tanimizu I. A new enzymatic method for determination of serum choline-containing phospholipids. Clin Chim Acta 1977; 79:93–8.Google Scholar

  • 27

    Desborough JP, Hall GM. Modification of the hormone and metabolic response to surgery by narcotics and general anaesthesia. Clin Anaesth 1989; 3:317–35.Google Scholar

  • 28

    Sofianos E, Alevizou F, Zissis N, Kostaki P, Balamoutsos N. Hormonal response in thoracic surgery. Effects of high-dose fentanyl anesthesia, compared to halothane anesthesia. Acta Anaesthesiol Belg 1985; 36:89–6.Google Scholar

  • 29

    Savendahl L, Mar MH, Underwood LE, Zeisel SH. Prolonged fasting in humans results in diminished plasma choline concentrations but does not cause liver dysfunction. Am J Clin Nutr 1997; 66:622–5.Google Scholar

  • 30

    Sheard NF, Da Costa KA, Zeisel SH. Accelerated uptake of an intravenously administered dose of choline chloride in choline-deficient humans. J Nutr Biochem 1994; 5:303–7.CrossrefGoogle Scholar

  • 31

    Canivet JL, Damas P, Buret J, Lamy M. Postoperative changes in lipid profile: their relations with inflammatory markers and endocrine mediators. Acta Anaesthesiol Belg 1989; 40:263–8.Google Scholar

  • 32

    Perry E. Cholinergic mechanisms and cognitive decline. Eur J Anaesthesiol 1998; 15:768–73.CrossrefGoogle Scholar

  • 33

    Poyhia R. Cholinergic mechanisms of analgesia. Acta Anesthesiol Scand 2000; 44:1033–4.CrossrefGoogle Scholar

  • 34

    Kubo T. Cholinergic mechanism and blood pressure regulation in the central nervous system. Brain Res Bull 1998; 46:475–81.CrossrefGoogle Scholar

  • 35

    Kehlet H, Wilmore DW. Multimodal strategies to improve surgical outcome. Am J Surg 2002; 283:630–41.Google Scholar

  • 36

    Luckey A, Livingston E, Tache Y. Mechanisms and treatment of postoperative ileus. Arch Surg 2003; 138:206–14.Google Scholar

  • 37

    Baig MK, Wexner SD. Postoperative ileus: a review. Dis Colon Rectum 2004; 47:516–26.CrossrefGoogle Scholar

  • 38

    Selnes OA, Goldsborough MA, Borowicz LM, McKhann GM. Neurobehavioural sequelae of cardiopulmonary bypass. Lancet 1999; 353:1601–6.Google Scholar

  • 39

    Link J, Papadopoulos G, Dopjans D, Guggenmoos-Holzmann I, Eyrich K. Distinct central anticholinergic syndrome following general anaesthesia. Eur J Anaesthesiol 1997; 14:15–23.CrossrefGoogle Scholar

  • 40

    Lindstedt U, Meyer O, Kroop P, Berkau A, Tapp E, Zenz M. Serum concentration of S-100 protein in assessment of cognitive dysfunction after general anaesthesia in different types of surgery. Acta Anaesthesiol Scand 2002; 46:384–9.CrossrefGoogle Scholar

  • 41

    Rasmussen LS, Christiansen M, Eliasen K, Sander-Jensen K, Moller JT. Biochemical markers for brain damage after cardiac surgery – time profile and correlation with cognitive dysfunction. Acta Anaesthesiol Scand 2002; 46:547–51.CrossrefGoogle Scholar

About the article

Corresponding author: Doc. Dr. Yesim Ozarda IIcol, Uludag University Medical School, Department of Biochemistry and Clinical Biochemistry, 16059 Bursa, Turkey Phone: +90-224-4428083, Fax: +90-224-4428083,


Received: 2004-07-20

Accepted: 2004-09-15

Published Online: 2005-06-01

Published in Print: 2004-12-01


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/CCLM.2004.259.

Export Citation

©2004 by Walter de Gruyter Berlin New York. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Christian Storm, Oliver Danne, Per Magne Ueland, Christoph Leithner, Dietrich Hasper, Tim Schroeder, and Toru Hosoda
PLoS ONE, 2013, Volume 8, Number 9, Page e76720
[2]
N. Sidhu, S. Davies, A. Nadarajah, J. Rivera, R. Whittington, R. J. Mercier, L. Virag, S. Wang, and P. Flood
British Journal of Anaesthesia, 2013, Volume 111, Number 2, Page 249
[3]
Richard J. Wurtman, Mehmet Cansev, Toshimasa Sakamoto, and Ismail H. Ulus
Annual Review of Nutrition, 2009, Volume 29, Number 1, Page 59
[4]
Yesim Ozarda Ilcol, Elif Basagan-Mogol, Mete Cengiz, and Ismail H. Ulus
Clinical Chemistry and Laboratory Medicine (CCLM), 2006, Volume 44, Number 4
[5]
Oliver Danne and Martin Möckel
Expert Review of Molecular Diagnostics, 2010, Volume 10, Number 2, Page 159

Comments (0)

Please log in or register to comment.
Log in