Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year


IMPACT FACTOR 2016: 3.432

CiteScore 2016: 2.21

SCImago Journal Rank (SJR) 2016: 1.000
Source Normalized Impact per Paper (SNIP) 2016: 1.112

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 43, Issue 1

Issues

Pathophysiology and diagnostic value of urinary trypsin inhibitors

Michael J. Pugia / John A. Lott
Published Online: 2005-06-01 | DOI: https://doi.org/10.1515/CCLM.2005.001

Abstract

Inflammation is an important indicator of tissue injury. In the acute form, there is usually accumulation of fluids and plasma components in the affected tissues. Platelet activation and the appearance in blood of abnormally increased numbers of polymorphonucleocytes, lymphocytes, plasma cells and macrophages usually occur. Infectious disorders such as sepsis, meningitis, respiratory infection, urinary tract infection, viral infection, and bacterial infection usually induce an inflammatory response. Chronic inflammation is often associated with diabetes mellitus, acute myocardial infarction, coronary artery disease, kidney diseases, and certain auto-immune disorders, such as rheumatoid arthritis, organ failures and other disorders with an inflammatory component or etiology. The disorder may occur before inflammation is apparent. Markers of inflammation such as C-reactive protein (CRP) and urinary trypsin inhibitors have changed our appraisal of acute events such as myocardial infarction; the infarct may be a response to acute infection and (or) inflammation.

We describe here the pathophysiology of an anti-inflammatory agent termed urinary trypsin inhibitor (uTi). It is an important anti-inflammatory substance that is present in urine, blood and all organs. We also describe the anti-inflammatory agent bikunin, a selective inhibitor of serine proteases. The latter are important in modulating inflammatory events and even shutting them down.

Keywords: antiprotease; autoimmune disease; bikunin; C-reactive protein; chondroitin sulfate; elastase; infection; inflammation; inter-α-inhibitor; pro-enzyme; proteolytic enzyme; protease-activated receptor; serine protease; urinary trypsin inhibitor

References

  • 1

    Hochstrasser K, Wachter E, Bretzel G. Liberation of Kunitz-type inhibitors from the inter-alpha-trypsin-inhibitor by limited proteolysis. Proc FEBS 1977; 47: 225–34. Google Scholar

  • 2

    Bost F, Diarra-Mehrpour M, Martin JP. Inter-alpha-trypsin inhibitor proteoglycan family-A group of proteins binding and stabilizing the extracellular matrix. Eur J Biochem 1998; 252: 339–46. CrossrefGoogle Scholar

  • 3

    Fries E, Kaczmarczyk A. Inter-alpha-inhibitor, hyaluronan and inflammation. Acta Biochim Pol 2003; 50: 735–42. Google Scholar

  • 4

    Salier JP, Rouet P, Raguenez G, Daveau M. The inter-alpha-inhibitor family: from structure to regulation. Biochem J 1996; 315: 1–9. Google Scholar

  • 5

    Bauer J, Reich Z III. Antitryptic action of urine. Med Klin 1909; 5: 1744–7. Google Scholar

  • 6

    Fries E, Blom AM. Bikunin – not just a plasma proteinase inhibitor. Int J Biochem Cell Biol 2000; 32: 125–37. CrossrefGoogle Scholar

  • 7

    Faarvang HJ. Urinary trypsin inhibitor in man. Scand J Clin Lab Invest 1965; 120: 1–83. Google Scholar

  • 8

    Endo Y. Antishock action of ulinastatin. Surg Trauma Immunol Response 2003; 12: 29–38. Google Scholar

  • 9

    Kato K. Human urinary trypsin inhibitor: its structure, biochemical properties and biosynthesis. Igaku Yakugaku 1995; 33: 1089–97. Google Scholar

  • 10

    Ishizaki T, Ameshima S. Protease inhibitors. Kokyu 1993; 12: 686–97. Google Scholar

  • 11

    Sakagami Y, Hoshi H. Biological function of protease inhibitors. Koso Kogaku 1993; 1: 187–201. Google Scholar

  • 12

    Szczeklik A, Szewczuk A. Proteolytic enzyme inhibitors from human plasma and serum. Postepy Hig Med Dosw 1972; 26: 731–49. Google Scholar

  • 13

    Vetr H, Gebhard W. Structure of the human alpha-1-microglobulin-bikunin gene. Hoppe-Seyler Biol Chem 1990; 371: 1185–96. Google Scholar

  • 14

    Kuwajima S, Matsui T, Kitahashi S, Kishida T, Noda T, Izumi Y, et al. Urinary trypsin inhibitor and its clinical usefulness for diagnosis of acute phase reactant and renal disease. Ensho 1989; 9: 175–82. CrossrefGoogle Scholar

  • 15

    Kuwajima S, Noda T, Izumi Y, Kitao H, Naka K, Okuda K. Urinary trypsin inhibitor as an acute phase reactant. Rinsho Byori 1992; 40: 751–5. Google Scholar

  • 16

    Merle M, Jeandel C, Belleville-Nabet F, Bertrand F, Penin F, Cuny G, et al. Assessment of the clinical value of urinary trypsin inhibitory activity in elderly people. Age Aging 1992; 21: 456–62. CrossrefGoogle Scholar

  • 17

    Piette M, Saba J, Bernard N, Pougheon M, Abat O, Fermanian J, et al. Urinary trypsin inhibitory activity for the diagnosis of bacterial infection: a prospective study in 690 patients. Eur J Med 1992; 1: 273–6. Google Scholar

  • 18

    Pugia MJ, Takemura T, Kuwajima S, Suzuki M, Cast TK, Profitt JA, et al. Clinical utility of a rapid test for uristatin. Clin Biochem 2002; 35: 105–10. CrossrefGoogle Scholar

  • 19

    Jortani SA, Pugia MJ, Elin RJ, Thomas M, Womack EP, Cast TK, et al. A sensitive non-invasive marker for diagnosis of probable bacterial or viral infection. J Clin Lab Anal 2004; 18: 289–95. CrossrefGoogle Scholar

  • 20

    Pugia MJ, Sommer R, Corey P, Lott JA, Anderson L, Gleason S, et al. The uristatin dipstick is useful in distinguishing upper respiratory from urinary tract infections. Clin Chim Acta 2004; 341: 73–81. Google Scholar

  • 21

    Takemura T, Nakano H, Kuwajma S. A clinical study of urinary trypsin inhibitor, an acute phase reactant in urine, in acute pediatric infectious diseases. Jpn J Inflamm 1994; 14: 53–7. Google Scholar

  • 22

    Mizon C, Piva F, Queyrel V, Balduyck M, Hachulla E, Mizon J. Urinary bikunin determination provides insight into proteinase/proteinase inhibitor imbalance in patients with inflammatory diseases. Clin Chem Lab Med 2002; 40: 579–86. Google Scholar

  • 23

    Pratt CW, Swaim MW, Pizzo, SV. Inflammatory cells degrade inter-alpha-inhibitor to liberate urinary proteinase inhibitors. J Leuk Biol 1989; 45: 1–9. Google Scholar

  • 24

    Lindstroem KE, Blom A, Johnsson E, Haraldsson B, Fries E. High glomerular permeability of bikunin despite similarity in charge and hydrodynamic size to serum albumin. Kidney Int 1997; 51: 1053–8. CrossrefGoogle Scholar

  • 25

    Ohlson M, Sorensson J, Lindstrom K, Blom AM, Fries E, Haraldsson B. Effects of filtration rate on the glomerular barrier and clearance of four differently shaped molecules. Am J Physiol 2001; 281: F103–13. Google Scholar

  • 26

    Hirashima Y, Kobayashi H, Suzuki M, Tanaka Y, Kanayama N, Fujie M, et al. Characterization of binding properties of urinary trypsin inhibitor to cell-associated binding sites on human chondrosarcoma cell line HCS-2/8. J Biol Chem 2001; 276: 13650–6. Google Scholar

  • 27

    Kanayama N, Maehara K, Suzuki M, Fujise Y, Terao T. The role of chondroitin sulfate chains of urinary trypsin inhibitor in inhibition of LPS-induced increase of cytosolic free Ca 2+ in HL60 cells and HUVEC cells. Biochem Biophys Res Commun 1997; 238: 560–4. CrossrefGoogle Scholar

  • 28

    Milner CM, Day AJ. TSG-6: a multifunctional protein associated with inflammation. J Cell Sci 2003; 116: 1863–73. CrossrefGoogle Scholar

  • 29

    Wakayama T, Mizushima S, Hirose J, Iseki S. Urinary trypsin inhibitor: production in the liver and reabsorption in the kidney of the rat. Acta Histochem Cytochem 1996; 29: 227–36. CrossrefGoogle Scholar

  • 30

    Nakakuki M, Yamasaki F, Shinkawa T, Kudo M, Watanabe M, Mizota M. Protective effect of human ulinastatin against gentamicin-induced acute renal failure in rats. Can J Physiol Pharmacol 1996; 74: 104–11. CrossrefGoogle Scholar

  • 31

    Shikimi T, Suzuki S, Kaku K, Ishino H, Okunishi H, Takaori S. Sex- and age-related changes in urinary contents of alpha-1-microglobulin and ulinastatin in mice. Clin Exp Pharmacol Physiol 1999; 26: 614–7. CrossrefGoogle Scholar

  • 32

    Markiewicz A. Urinary antitrypsin activity in acute renal failure. Pol Arch Med Wewn 1970; 45: 661–7. Google Scholar

  • 33

    Olear T, Nouza K. Thrombin and trypsin receptors: the same mechanism of signaling on cellular surfaces. Bratisl Lek Listy 1999; 100: 75–9. Google Scholar

  • 34

    Brinkmann T, Schaefers J, Guertler L, Kido H, Niwa Y, Katunuma N, et al. Inhibition of tryptase TL2 from human T4+ lymphocytes and inhibition of HIV-1 replication in H9 cells by recombinant aprotinin and bikunin homologs. J Protein Chem 1997; 16: 651–60. Google Scholar

  • 35

    Kobayashi H, Suzuki M, Hirashima Y, Terao T. The protease inhibitor bikunin, a novel anti-metastatic agent. Biol Chem 2003; 384: 749–54. Google Scholar

  • 36

    Egeblad K, Astrup T. Fibrinolysis and the trypsin inhibitor in human urine. Scand J Clin Lab Invest 1966; 18: 181–90. CrossrefGoogle Scholar

  • 37

    Morishita H, Yamakawa T, Matsusue T, Kusuyama T, Sameshima-Aruga R, Hirose J, et al. Novel factor Xa and plasma kallikrein inhibitory activities of the second Kunitz-type inhibitory domain of urinary trypsin inhibitor. Thromb Res 1994; 73: 193–204. CrossrefGoogle Scholar

  • 38

    Sumi H, Hamada H, Yoshida E, Tsushima H, Maruyama M, Mihara H. Chemical modification and anti-fibrinolysis of urinary trypsin inhibitor (UTI). Ketsueki Myakkan 1988; 19: 668–71. Google Scholar

  • 39

    Mania-Pramanik J, Potdar SS, Vadigoppula A, Sawant S. Elastase: a predictive marker of inflammation and/or infection. J Clin Lab Anal 2004; 18: 153–8. CrossrefGoogle Scholar

  • 40

    Campbell DJ. Towards understanding the kallikrein-kinin system: insights from measurement of kinin peptides. Br J Med Biol Res 2000; 33: 665–77. CrossrefGoogle Scholar

  • 41

    Campbell DJ. The kallikrein-kinin system in humans. Clin Exp Pharmacol Physiol 2001; 28: 1060–5. CrossrefGoogle Scholar

  • 42

    Johnson R, Couser W, Alpers C, Vissers M, Schulze M. The human neutrophil serine proteinases, elastase and cathepsin G can mediate glomerular injury in vivo. J Exp Med 1988; 168: 1169–74. CrossrefGoogle Scholar

  • 43

    Bromke BJ, Kueppers F. The major urinary protease inhibitor: simplified purification and characterization. Biochem Med 1982; 27: 56–67. CrossrefGoogle Scholar

  • 44

    Nakatani K, Takeshita S. Vascular endothelial cell injury by activated neutrophil and treatment for the injury. Surg Trauma Immunol Response 1999; 8: 112–4. Google Scholar

  • 45

    Isogai R, Matsukura A, Aragane Y, Maeda A, Matsukura M, Yudate T, et al. Quantitative analysis of bikunin-laden mast cells in follicular eruptions and chronic skin lesions of atopic dermatitis. Arch Dermatol Res 2002; 294: 387–92. Google Scholar

  • 46

    Cowan B, Baron O, Crack J, Coulber C, Wilson GJ, Rabinovitch ME. A serine elastase inhibitor attenuates post-cardiac transplant coronary arteriopathy and reduces myocardial necrosis in rabbits after heterotopic cardiac transplantation. J Clin Invest 1996; 97: 2452–68. CrossrefGoogle Scholar

  • 47

    Fujita H, Morita I, Murota S. Cytoprotective effect of protease inhibitors on vascular endothelial cell injury induced by PMA-stimulated leukocytes. Ensho 1991; 11: 501–2. CrossrefGoogle Scholar

  • 48

    Kato K, Nagao Y, Kurosawa M. Effect of human urinary trypsin inhibitor (ulinastatin) on inflammatory mediators from leukocytes: a possible role in the prevention of SIRS. Igaku Yakugaku 1995; 34: 499–506. Google Scholar

  • 49

    Kanayama N, Maehara K, She L, Belayet H, Khatun S, Tokunaga N, et al. Urinary trypsin inhibitor suppresses vascular smooth muscle contraction by inhibition of Ca 2+ influx. Biochim Biophys Acta 1998; 1381: 139–46. Google Scholar

  • 50

    Imokawa H. Substances influencing the vascular permeability of an ear burn model in mice. The effectiveness of antihistamines. Sei Marianna Ika Daigaku Zasshi 1991;19:310–7. Google Scholar

  • 51

    Imokawa H, Ando K, Kubota T, Isono E, Inoue H, Ishida H. Study on the kinetics of bradykinin level in the wound produced by thermal injury in the ear burn model in mice. Nippon Yakurigaku Zasshi 1992; 99: 445–50. CrossrefGoogle Scholar

  • 52

    Takada K, Komori M, Notoya A, Tomizawa Y, Ozaki M. Effect of ulinastatin on microcirculation during excessive hemorrhage using fluid therapy. In Vivo 2003; 17: 129–36. Google Scholar

  • 53

    Hirano T, Manabe T. Human urinary trypsin inhibitor, urinastatin, prevents pancreatic injuries induced by pancreaticobiliary duct obstruction with caerulein stimulation and systemic hypotension in the rat. Arch Surg 1993; 128: 1322–9. CrossrefGoogle Scholar

  • 54

    Shinohara H, Kobayashi H, Hirashima Y, Ohi H, Terao T. Urinary trypsin inhibitor (UTI) efficiently inhibits tumor cell invasion and metastasis in the experimental and spontaneous model. J Jpn Soc Cancer Ther 1996; 3: 186–95. Google Scholar

  • 55

    Khan SR, Kok DJ. Modulators of urinary stone formation. Front Biosci 2004; 9: 1450–82. CrossrefGoogle Scholar

  • 56

    Takahashi M, Sawaguchi T, Sawaguchi A, Suzuki T. The cytoprotective effect of protease inhibitor on programmed cell death of endothelial cell. Tokyo Joshi Ika Daigaku Zasshi 2001;71:669–78. Google Scholar

  • 57

    Onai H, Kudo S. Suppression of superantigen-induced lung injury and vasculitis by pre-administration of human urinary trypsin inhibitor. Eur J Clin Invest 2001; 31: 272–80. CrossrefGoogle Scholar

  • 58

    Wilharm E, Parry MAA, Friebel R, Tschesche H, Matschiner G, Sommerhoff CP, et al. Generation of catalytically active granzyme K from Escherichia coli inclusion bodies and identification of efficient granzyme K inhibitors in human plasma. J Biol Chem 1999; 274: 27331–7. CrossrefGoogle Scholar

  • 59

    Hashimoto K, Nagao Y, Kato K, Mori Y, Ito A. Human urinary trypsin inhibitor inhibits the activation of pro-matrix metalloproteinases and proteoglycans release in rabbit articular cartilage. Life Sci 1998; 63: 205–13. CrossrefGoogle Scholar

  • 60

    Delaria KA, Muller DK, Marlor CW, Brown JE, Das RC, Roczniak SO, et al. Characterization of placental bikunin, a novel human serine protease inhibitor. J Biol Chem 1997; 272: 12209–14. CrossrefGoogle Scholar

  • 61

    Potempa J, Kwon K, Chawla R, Travis J. Inter-alpha-trypsin inhibitor. Inhibition spectrum of native and derived forms. J Biol Chem 1989; 264: 15109–14. Google Scholar

  • 62

    Hirose J, Ozawa T, Miura T, Isaji M, Nagao Y, Yamashiro K, et al. Human neutrophil elastase degrades inter-alpha-trypsin inhibitor to liberate urinary trypsin inhibitor-related-proteins. Biol Pharm Bull 1998; 21: 651–6. CrossrefGoogle Scholar

  • 63

    Nii A, Morishita H, Hirose J, Yamakawa T, Kanamori T. Novel blood coagulation factor inhibitory activities of the second domain of urinary trypsin inhibitor and its variants. Nippon Kessen Shiketsu Gakkaishi 1995; 6: 203–7. Google Scholar

  • 64

    Nii A, Morishita H, Yamakawa T, Matsusue T, Hirose J, Miura T, et al. Design of variants of the second domain of urinary trypsin inhibitor (R-020) with increased factor Xa inhibitory activity. J Biochem 1994; 115: 1107–12. Google Scholar

  • 65

    Brakman P, Astrup T. Selective inhibition in human pregnancy blood of urokinase-induced fibrinolysis. Scand J Clin Lab Invest 1963; 15: 603–9. CrossrefGoogle Scholar

  • 66

    Egeblad K, Astrup T. Alpha-aminocaproic acid and urinary trypsin inhibitor: potentiated inhibition of urokinase-induced fibrinolysis. Proc Soc Exp Biol Med 1963; 112: 1022. Google Scholar

  • 67

    Lorand L, Condit EV. Ester hydrolysis by urokinase. Biochemistry 1965; 4: 265–70. CrossrefGoogle Scholar

  • 68

    Speer C, Rechwilm M, Tegtmeyer F, Gahr M. Elastase-alpha-PI: early indicator of infections in pediatric patients. Second Vienna Shock Forum, 1989:689–93. Google Scholar

  • 69

    Creighton TE. Protein structure and molecular properties. New York: WH Freeman & Co, 1984:253–5. Google Scholar

  • 70

    Cocks T, Moffatt J. Protease-activated receptors: sentries for inflammation. Trends Pharmacol Sci 2000; 21: 103–8. CrossrefGoogle Scholar

  • 71

    Cottrell G. Protease activated receptors: the role of cell surface proteolysis in signaling. Essays Biochem 2002; 38: 169–83. CrossrefGoogle Scholar

  • 72

    Miike S, McWilliam A, Kita H. Trypsin induces activation and inflammatory mediator release from human eosinophils through protease-activated receptor-2. J Immunol 2001; 167: 6615–22. CrossrefGoogle Scholar

  • 73

    Shibutani Y, Kunihiro Y. Preventive effects of urinastatin on tissue degradation. Yakuri Chiryo 1986; 14: 6057–72. Google Scholar

  • 74

    Lott JA. Transplantation of the pancreas or pancreatic islet cells: a clinical perspective. In: Lott JA, editor. Clinical pathology of pancreatic disorders. Totowa, NJ: Humana Press 1997:1–26. Google Scholar

  • 75

    Ogawa K, Hasegawa Y, Nikai T, Sugihara H, Takagi K. Elastase from Aspergillus fumigatus, its pathogenetic role and inhibitor. Nippon Ishinkin Gakkai Zasshi 1997; 38: 149–53. Google Scholar

  • 76

    Kadowaki T, Takii R, Baba A, Yamamoto K. Gingipains as the determinants of periodontopathogenicity. Nippon Yakurigaku Zasshi 2003; 122: 37–44. CrossrefGoogle Scholar

  • 77

    Sidhu SS, Kalmar GB, Willis LG, Borgford TJ. Protease evolution in Streptomyces griseus. Discovery of a novel dimeric enzyme. J Biol Chem 1995; 270: 7594–600. Google Scholar

  • 78

    Brain SD. New feelings about the role of sensory nerves in inflammation. Nat Med 2000; 6: 134–5. CrossrefGoogle Scholar

  • 79

    Kuwajima S, Izumi Y, Noda T, Kitao H, Kishida T, Naka K, et al. Automated measurement of urinary trypsin inhibitor, an acute phase reactant in urine. Int Cong Ser Prog Clin Biochem 1992; 991: 317–20. Google Scholar

  • 80

    Fink E, Godec G, Arnhold M, Nawratil P. Utilization of polyspecific antiserum for specific radioimmunoassays: radioimmunoassays for rat fetuin and bikunin were developed by using antiserum against total rat serum proteins. Anal Lett 1993; 26: 2587–94. CrossrefGoogle Scholar

  • 81

    Noda T. The immunoassay of human urinary trypsin indicator and its clinical significance as an acute-phase reactant. J Osaka City Med Cent 1992; 41: 489–500. Google Scholar

  • 82

    Ogloblina O, Beckert R, Belova L, Bauer M, Smirnov M. Monoclonal antibodies that recognize trypsin binding domain of human urinary trypsin inhibitor. Hybridoma 1993; 12: 745–54. CrossrefGoogle Scholar

  • 83

    Shikimi T, Suzuki S, Takahashi M, Kaneto H. Sandwich enzyme-immunoassay of human urinary trypsin inhibitor (urinastatin) and urinastatin-like immunoreactive substance in mouse urine. Scand J Clin Lab Invest 1990; 50: 1–8. CrossrefGoogle Scholar

  • 84

    Ukai R. Immunohistochemical localization of human urinary trypsin inhibitor (UTI) in normal and fetal kidney and renal cancer tissue. Hiroshima Daigaku Igaku Zasshi 1986; 34: 837–47. Google Scholar

  • 85

    Nishino N, Aoki K, Tokura Y, Sakaguchi S, Fujie M, Sugawara Y, et al. Measurement of urinary trypsin inhibitor in urine, plasma, and cancer tissues of patients with stomach cancer. Haemostasis 1989; 19: 112–9. Google Scholar

  • 86

    Faarvang HJ. Spontaneous individual variations of the normal 24-hour excretion of trypsin inhibitor in urine. Scand J Clin Lab Invest 1962; 14: 132–7. Google Scholar

  • 87

    Kuwajima S, Noda T, Izumi Y, Kitao H, Naka K, Okuda K. Urinary trypsin inhibitor as an acute phase reactant. Rinsho Byori 1992; 40: 751–5. Google Scholar

  • 88

    Mayehiro A. Trypsin inhibitor in urine. I. The trypsin inhibitor of the urine of normal persons. Yokohama Med Bull 1959; 10: 329–36. Google Scholar

  • 89

    Newman D, Pugia M, Lott JA, Wallace J, Hiar J. Urinary protein and albumin excretion corrected by creatinine and specific gravity. Clin Chim Acta 2000; 294: 139–55. CrossrefGoogle Scholar

  • 90

    Gosset D, Mizon C, Savinel P, Balduyck M, Boniface B, Hatron PY, et al. Value of urinary trypsin inhibitory capacity determination. Presse Med 1988; 17: 329–32. Google Scholar

  • 91

    Ueki M, Yokano S, Taya S, Nosuga J, Komatsu H, Oguri K. Changes in urine urinastatin discharge amount and C reactive protein after gastrectomy. Anesthesia 1996; 45: 933–6. Google Scholar

  • 92

    Du Clos T. Function of C-reactive protein. Am Med 2000; 32: 274–8. Google Scholar

  • 93

    Gershov D, Kim S, Brot N, Elkon K. C-Reactive protein binds to apoptotic cells. J Exp Med 2000; 192: 1353–63. CrossrefGoogle Scholar

  • 94

    Deodhar S. C-Reactive protein: the best laboratory indictor available for monitoring disease activity. Cleve Clin J Med 1989; 56: 126–30. Google Scholar

  • 95

    Jaye DL, Waits KB. Clinical applications of C-reactive protein in paediatrics. Pediatr Infect Dis J 1997; 16: 735–47. CrossrefGoogle Scholar

  • 96

    Da Silva O, Ohlsson A, Kenyon C. Accuracy of leukocyte indices and C-reactive protein for diagnosis of neonatal sepsis: a critical review. Pediatr Infect Dis J 1995; 14: 362–6. CrossrefGoogle Scholar

  • 97

    Yentis SM, Soni N, Sheldon J. C-Reactive protein as an indicator of resolution of sepsis in the intensive care unit. Intensive Care Med 1995; 21: 602–5. Google Scholar

  • 98

    Abramson JS, Hampton KD, Babu S. The use of C-reactive protein from cerebrospinal fluid for differentiating meningitis from other central nervous system diseases. J Infect Dis 1985; 151: 854–8. CrossrefGoogle Scholar

  • 99

    Benjamin DR, Opheim KE, Brewer L. Is C-reactive protein useful in the management of children with suspected bacterial meningitis? Am J Clin Pathol 1984; 81: 779–82. CrossrefGoogle Scholar

  • 100

    Dias LR, Alves Ribeiro M, Farhat CK. CRP follow-up of children with acute bacterial meningitis. Braz J Infect Dis 1999; 3: 15–22. Google Scholar

  • 101

    Tatara R, Imai H. Serum CRP in differential diagnosis of childhood meningitis. Pediatr Int 2000; 42: 541–6. CrossrefGoogle Scholar

  • 102

    Erkasap S, Ates E, Ustuner Z. Diagnostic value of IL-6 and C-reactive protein in acute appendicitis. Swiss Surg 2000; 6: 169–72. CrossrefGoogle Scholar

  • 103

    Heishanen-Kosma T, Korppi M. Serum C-reactive protein cannot differentiate bacterial and viral etiology of community acquired pneumonia. Scand J Infect Dis 2000; 32: 399–402. Google Scholar

  • 104

    Simon L, Gauvin F, Amre DK, Saint-Louis P, Lacroix J. Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis. Clin Infect Dis 2004; 39: 206–17. CrossrefGoogle Scholar

  • 105

    Franz AR, Steinbach G, Kron M, Pohlandt F. Reduction of unnecessary antibiotic therapy in newborn infants using IL-8 and C-reactive protein as markers of bacterial infections. Pediatrics 1999; 447–53. CrossrefGoogle Scholar

  • 106

    Isaacman DJ, Burke BL. Utility of the serum C-reactive protein in detection of occult bacterial infections in children. Arch Pediatr Adolesc Med 2002; 156: 905–9. CrossrefGoogle Scholar

  • 107

    Roine I, Faingezicht I, Arguedas A, Herrera JF, Rodriguez F. Serial serum C-reactive protein to monitor recovery from acute haematogenous osteomyelytis in children. Pediatr Infect Dis J 1995; 14: 56–9. Google Scholar

  • 108

    Barland P, Lipstein E. Selection and uses of laboratory tests in rheumatic diseases. Am J Med 1996; 100: 16s–20s. Google Scholar

  • 109

    Thompson D, Milford-Ward A, Whicher JT. The value of acute phase protein measurements in clinical practice. Ann Clin Biochem 1992; 29: 123–31. CrossrefGoogle Scholar

  • 110

    Danesh J, Collins R, Appleby P, Peto R. Association of fibrinogen, C-reactive protein, albumin, or leucocyte count with coronary heart disease: meta-analysis of perspective studies. J Am Med Assoc 1998; 279: 1477–82. Google Scholar

  • 111

    Pasceri V, Willerson JT, Yeh ETH. Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation 2000; 102: 2165–8. CrossrefGoogle Scholar

  • 112

    Ridker P, Rifai N, Rose L, Buring J, Cook N. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 2002; 347: 1557–65. Google Scholar

  • 113

    Kilpatrick ES, Keevil BG, Jagger C, Spooner RJ, Small M. Determination of raised CRP concentration in type 1 diabetes. Q J Med 2000; 93: 231–6. Google Scholar

  • 114

    Santolaya ME, Cofre J, Beresi V. C-Reactive protein: a valuable aid for the management of febrile children with cancer and neutropenia. Clin Infect Dis 1994; 18: 589–95. CrossrefGoogle Scholar

  • 115

    Eisenberg MS, Chek HJ, Washofsky MK, Sciacca RR, Wasserman HS, Schwartz A, et al. Elevated levels of plasma C-reactive protein are associated with decreased graft survival in cardiac transplant patients. Circulation 2000; 102: 2100–4. CrossrefGoogle Scholar

  • 116

    Escobar GJ. Effect of the systemic inflammatory response on biochemical markers of neonatal bacterial infection: a fresh look at old confounders. Clin Chem 2003; 49: 21–2. Google Scholar

  • 117

    Chiesa C, Pellegrini G, Panero A, Osborn J, Signore F, Assumma M, et al. C-Reactive protein, interleukin-6, and procalcitonin in the immediate postnatal period: influence of illness severity, risk status, antenatal and perinatal complications, and infection. Clin Chem 2003; 49: 60–8. CrossrefGoogle Scholar

  • 118

    Toikka P, Irjala K, Juven T, Virkki R, Mertsola J, Leinonen M, et al. Serum procalcitonin, C-reactive protein, IL-6 in distinguishing bacterial and viral pneumonia in children. Pediatr Infect Dis J 2000;vol: 598–602. CrossrefGoogle Scholar

  • 119

    Hotta O, Yusa N, Ooyama M, Unno K, Furuta T, Taguma Y. Detection of urinary macrophages expressing the CD16 molecule: a novel marker of acute inflammatory glomerular injury. Kidney Int 1999; 55: 1927–34. CrossrefGoogle Scholar

  • 120

    Huang F, Horikoshi S, Kurusu A, Shibata T, Suzuki S, Funabiki K, et al. Urinary levels of interleukin-8 (IL-8) and disease activity in patients with IgA nephropathy. J Clin Lab Anal 2001; 15: 30–4. Google Scholar

  • 121

    Koizumi R, Kanai H, Maezawa A, Kanda T, Nojima Y, Naruse T. Therapeutic effects of ulinastatin on experimental crescentic glomerulonephritis in rats. Nephron 2000; 84: 347–53. CrossrefGoogle Scholar

  • 122

    Onbe T, Makino H, Haramoto T, Wada J, Ogura T, Kumagai I, et al. Effect of protease inhibitor on primary glomerulonephritis and the mechanism of the effect. Jpn J Nephrol 1991; 33: 753–9. Google Scholar

  • 123

    Mayehiro A. Studies of trypsin inhibitor in urine. II. Trypsin inhibitor of the urine in various pediatric patients. Yokohama Med Bull 1960; 11: 111–24. Google Scholar

  • 124

    Cochrane CG, Unanue ER, Dixon FJ. A role of polymorphonuclear leukocyte and complement in nephrotoxic nephritis. J Exp Med 1965; 122: 99–116. CrossrefGoogle Scholar

  • 125

    Itabashi K, Takahashi T, Ito Y, Ishii K, Sato K, Kakita A. Protective effects of urinary trypsin inhibitor on hepatic microvascular injury in hypotensive brain-dead rats. Transplant Proc 2003; 35: 114–6. CrossrefGoogle Scholar

  • 126

    Nakatani K, Takeshita S. Vascular endothelial cell injury by activated neutrophils and treatment for the injury. Surg Trauma Immunol Response 1999; 8: 112–4. Google Scholar

  • 127

    Nakatani K, Takeshita S, Tsujimoto H, Kawamura Y, Sekine I. Inhibitory effect of serine protease inhibitors on neutrophil-mediated endothelial cell injury. J Leuk Biol 2001; 69: 241–7. Google Scholar

  • 128

    Tomino Y. IgA nephropathy: from molecules to men. contributions to nephrology, vol. 126. Basel, Switzerland: Karger, 1999:1–115. Google Scholar

  • 129

    Taha AS, Grant V, Kelly RW. Urinalysis for interleukin-8 in the non-invasive diagnosis of acute and chronic inflammatory diseases. Postgrad Med J 2003; 79: 159–63. CrossrefGoogle Scholar

  • 130

    Nagai T. The effect of pancreatic elastase on diabetic nephropathy. Diabetes Res Clin Pract 1994; 24: 164–5. Google Scholar

  • 131

    Taubes G. Does inflammation cut to the heart of the matter. Science 2002; 296: 242–5. CrossrefGoogle Scholar

  • 132

    Aihara T, Shiraishi M, Hiroyasu S, Hatsuse K, Mochizuki H, Seki S, et al. Ulinastatin, a protease inhibitor, attenuates hepatic ischemia/reperfusion injury by down-regulating TNF-alpha in the liver. Transplant 1998; 30: 3732–4. CrossrefGoogle Scholar

  • 133

    Kaneko H. Injury mechanisms by neutrophil elastase and cytokines in a liver ischemia model and the countermeasures. Surg Trauma Immunol Response 2002; 11: 91–3. Google Scholar

  • 134

    Okajima K. Therapy of shock-induced renal injury by UTI. Surg Trauma Immunol Response 2002; 11: 114–7. Google Scholar

  • 135

    Okuhama Y, Shiraishi M, Higa T, Tomori H, Taira K, Mamadi T, et al. Protective effects of ulinastatin against ischemia-reperfusion injury. J Surg Res 1999; 82: 34–42. CrossrefGoogle Scholar

  • 136

    Yamaguchi Y, Ohshiro H, Nagao Y, Odawara K, Okabe K, Hidaka H, et al. Urinary trypsin inhibitor reduces C-X-C chemokine production in rat liver ischemia/reperfusion. J Surg Res 2000; 94: 107–15. CrossrefGoogle Scholar

  • 137

    Takada K, Komori M, Notoya A, Tomizawa Y, Ozaki M. Effect of ulinastatin on microcirculation during excessive hemorrhage using fluid therapy. In Vivo 2003; 17: 129–36. Google Scholar

  • 138

    Chao J, Stallone J, Liang Y, Chen L, Wang D, Chao L. Kallistatin is a potent new vasodilator. J Clin Invest 1997; 100: 11–7. Google Scholar

  • 139

    Takahashi M, Sawaguchi T, Sawaguchi A, Suzuki T. The cytoprotective effect of protease inhibitor on programmed cell death of endothelial cell. Tokyo Joshi Ika Daigaku Zasshi 2001; 71: 669–78. Google Scholar

  • 140

    Kaplan A, Silverberg M, Dunn J, Ghebrehiwet B. Interaction of the clotting, kinin forming, complement, and fibrinolytic pathways in inflammation. Ann NY Acad Sci 1982; 389: 25–38. Google Scholar

  • 141

    Murakami M. Effect of protease inhibitors on endotoxin-induced disseminated intravascular coagulation in rats. Kyoto Ika Daigaku Zasshi 1988; 97: 1155–65. Google Scholar

  • 142

    Eguchi Y. DIC-induced organ failure. Igaku Ayumi 2003; 206: 19–22. Google Scholar

  • 143

    Nii A, Morishita H, Yamakawa T, Matsusue T, Hirose J, Miura T, et al. Design of variants of the second domain of urinary trypsin inhibitor (R-020) with increased factor Xa inhibitory activity. J Biochem 1994; 115: 1107–12. CrossrefGoogle Scholar

  • 144

    Sakuragawa N, Shimotori T, Takahashi K, Niwa M. Effect of urinastatin on coagulation, fibrinolysis, and platelet aggregation in vitro and in vivo. Saishin Igaku 1987; 42: 820–30. Google Scholar

  • 145

    Fabris C, Basso D, Naccarato R. Urinary enzymes excretion in pancreatic disease. J Clin Gastroenterol 1992; 14: 281–4. Google Scholar

  • 146

    Fabris C, Basso D, Benini L, Meggiato T, Del Favero G, Cavallini G, et al. Urinary elastate 1 in chronic pancreatic disease. Enzyme 1989; 42: 80–6. Google Scholar

  • 147

    Weber C, Adler G. From acinar cell damage to systemic inflammatory response. Curr Concepts Pancreatitis Pancreatol 2001; 1: 356–62. Google Scholar

  • 148

    Kazmierczak SC. Biochemical indicators of acute pancreatitis. In: Lott JA, editor. Clinical pathology of pancreatic disorders. Totowa, NJ: Humana Press, 1997:75–124. Google Scholar

  • 149

    Gwozdz G, Steinberg W, Werner M, Henry J, Pauley C. Comparative evaluation of the diagnosis of acute pancreatitis based on serum and urine enzyme assays. Clin Chim Acta 1990; 187: 243–54. CrossrefGoogle Scholar

  • 150

    Sugita T, Wartarida S, Katsuyama K, Nakajima Y, Yamamoto R, Mori A. Effect of a human urinary protease inhibitor (ulinastatin) on respiratory function in pediatric patients undergoing cardiopulmonary bypass. J Cardiovasc Surg 2002; 43: 437–40. Google Scholar

  • 151

    Matsumi M, Takashima T. Endogenous UTI and prognosis in sepsis. Surg Trauma Immunol Response 2001; 10: 20–4. Google Scholar

  • 152

    Hamazaki K, Matsubara N, Edahiro T, Sodeki Y, Mimura T, Mori M. Granulocytic elastase after hepatic resection, effect of urinastatin on change in IL-6. Clin Res 1994; 71: 213–6. Google Scholar

  • 153

    Nishiyama T, Hanaoka K. Do the effects of a protease inhibitor, ulinastatin, on elastase release by blood transfusion depend on interleukin 6? Crit Care Med 2001; 29: 2106–10. CrossrefGoogle Scholar

  • 154

    Ambiru S, Miyazaki M, Sasada K, Ito H, Kimura F, Nakagawa K, et al. Effects of perioperative protease inhibitor on inflammatory cytokines and acute-phase proteins in patients with hepatic resection. Digest Surg 2000; 17: 337–43. CrossrefGoogle Scholar

  • 155

    Okumura Y, Inoue H, Fujiyama Y, Bamba T. Effects of serine protease inhibitors on accumulation of polymorphonuclear leukocytes in the lung induced by acute pancreatitis in rats. J Gastroenterol 30 1995; 379–86. CrossrefGoogle Scholar

  • 156

    Kaneko H. Injury mechanisms by neutrophil elastase and cytokines in a liver ischemia model and the countermeasures. Surg Trauma Immunol Response 2002; 11: 91–3. Google Scholar

  • 157

    Yoshino M. Contribution of TNF-alpha and IL-6 in hepatic ischemia reperfusion injury. Toho Igakkai Zasshi 1996; 42: 530–43. Google Scholar

  • 158

    Suzuki M, Kobayashi H, Tanaka Y, Hirashima Y, Kanayama N, Takei Y, et al. Suppression of invasion and peritoneal carcinomatosis of ovarian cancer cell line by over-expression of bikunin. Int J Cancer 2003; 104: 289–302. CrossrefGoogle Scholar

  • 159

    Kobayashi H, Sugino D, Terao T. Urinary trypsin inhibitor, a Kunitz-type protease inhibitor, modulates tumor necrosis factor-stimulated activation and translocation of protein kinase C in U937 cells. Int J Oncol 1998; 12: 95–105. Google Scholar

  • 160

    Kobayashi H, Suzuki M, Hirashima Y, Terao T. The protease inhibitor bikunin, a novel anti-metastatic agent. Biol Chem 2003; 384: 749–54. Google Scholar

  • 161

    Hirashima Y, Suzuki M, Kobayashi H. Suppression of cancer invasion and metastasis in human ovarian cancer cells transfected with UTI gene. Surg Trauma Immunol Response 2001; 10: 30–6. Google Scholar

  • 162

    Kobayashi H, Gotoh J, Hirashima Y, Terao T. Inter-alpha-trypsin inhibitor bound to tumor cells is cleaved into the heavy chains and the light chain on the cell surface. J Biol Chem 1996; 271: 11362–7. Google Scholar

  • 163

    Kobayashi H, Hirashima Y, Sun Guang W, Fujie M, Nishida T, Takigawa M, et al. Identity of urinary trypsin inhibitor-binding protein to link protein. J Biol Chem 2000; 275: 21185–91. CrossrefGoogle Scholar

  • 164

    Kobayashi H, Sugino D, She MY, Ohi H, Hirashima Y, Shinohara H, et al. A bifunctional hybrid molecule of the amino-terminal fragment of urokinase and domain II of bikunin efficiently inhibits tumor cell invasion and metastasis. Eur J Biochem 1998; 253: 817–26. CrossrefGoogle Scholar

  • 165

    Suzuki M, Kobayashi H, Tanaka Y, Hirashima Y, Terao T. Structure and function analysis of urinary trypsin inhibitor (UTI): identification of binding domains and signaling property of UTI by analysis of truncated proteins. Biochim Biophys Acta 2001; 1547: 26–36. Google Scholar

  • 166

    Takubo T, Kumura T, Nakamae H, Aoyama Y, Koh KR, Ohta K, et al. Urinary trypsin inhibitor levels in the urine of patients with haematological malignancies. Haematology 2001; 31: 267–72. CrossrefGoogle Scholar

  • 167

    Takubo T, Kuwajima S, Tatsumi N. Clinical usefulness of urinary trypsin inhibitor in hematological disorders. Igaku Seibutsugaku 1997; 134: 25–8. Google Scholar

  • 168

    Brinkmann T, Weilke C, Kleesiek K. Recognition of acceptor proteins by UDP-D-xylose proteoglycan core protein β-D-xylosyltransferase. J Biol Chem 1997; 272: 11171–5. Google Scholar

  • 169

    Yoneda M, Kimata K. Hyaluronan-rich extracellular matrix. A role of inter-alpha-trypsin inhibitor, serum derived proteoglycan. Seikagaku 1995; 67: 458–65. Google Scholar

  • 170

    Zhuo L, Salustri A, Kimata K. A physiological function of serum proteoglycan bikunin: the chondroitin sulfate moiety plays a central role. Glycoconj J 2002; 19: 241–7. CrossrefGoogle Scholar

  • 171

    Zhuo L, Yoneda M, Zhao M, Yingsung W, Yoshida N, Kitagawa Y, et al. Defect in SHAP-hyaluronan complex causes severe female infertility. A study by inactivation of the bikunin gene in mice. J Biol Chem 2001; 276: 7693–6. CrossrefGoogle Scholar

  • 172

    Hochstrasser K, Schoenberger OL, Rossmanith I, Wachter E. Kunitz-type proteinase inhibitors derived by limited proteolysis of the inter-alpha-trypsin inhibitor. V. Attachments of carbohydrates in the human urinary trypsin inhibitor isolated by affinity chromatography. Hoppe-Seyler Z Physiol Chem 1981; 362: 1357–62. CrossrefGoogle Scholar

  • 173

    Kato Y, Kudo M, Shinkawa T, Mochizuki H, Isaji M, Shiromizu I, et al. Role of O-linked carbohydrate of human urinary trypsin inhibitor on its lysosomal membrane-stabilizing property. Biochem Biophys Res Commun 1998; 243: 377–83. CrossrefGoogle Scholar

  • 174

    Mizon C, Mairie C, Balduyck M, Hachulla E, Mizon J. The chondroitin sulfate chain of bikunin-containing proteins in the inter-alpha-inhibitor family increases in size in inflammatory diseases. Eur J Biochem 2001; 268: 2717–24. CrossrefGoogle Scholar

  • 175

    Capon C, Mizon C, Lemoine J, Rodié-Talbère P, Mizon J. In acute inflammation, the chondroitin-4 sulphate carried by bikunin is not only longer; it is also undersulphated. Biochimie 2003; 85: 101–7. Google Scholar

  • 176

    Yamada S, Oyama M, Yuki Y, Kato K, Sugahara K. The uniform galactose 4-sulfate structure in the carbohydrate-protein linkage region of human urinary trypsin inhibitor. Eur J Biochem 1995; 233: 687–93. Google Scholar

  • 177

    Worcester , EM. Inhibitors of stone formation. Semin Nephrol 1996; 16: 474–86. Google Scholar

  • 178

    Aoyama N, Minamiide J, Yoneyama K, Doi N, Kamiya J, Hoshino S, et al. Role of urinastatin administration in surgery for esophageal cancer – changes in cytokines and neutrophil elastase, and critical percentage of SIRS. Prog Med 1998; 18: 1724–7. Google Scholar

  • 179

    Karasawa T, Uehara K, Yokota T, Nomoto S. Changes in blood cytokines in abdominal resection, and effect of urinastatin and blood transfusion. Rinsho Masui [Clin Anesth] 1996; 20: 1169–75. Google Scholar

  • 180

    Matsumi M, Mizobuchi S, Kaku R, Ohashi I, Nakatsuka H, Katayama H. Changes in urinary trypsin inhibitor in blood and urine, as well as serum cytokines in living related liver transplantation. Anesthesia 2003; 52: 251–6. Google Scholar

  • 181

    Rider LG, Schiffenbauer AS, Zito M, Lim KL, Ahmed A, Zemel LS, et al. Neopterin and quinolinic acid are surrogate measures of disease activity in the juvenile idiopathic inflammatory myopathies. Clin Chem 2002; 48: 1681–8. Google Scholar

  • 182

    Meisner M. Pathobiochemistry and clinical use of procalcitonin. Clin Chim Acta 2002; 48: 17–29. CrossrefGoogle Scholar

  • 183

    Song J, Yoon Y, Park K, Park J, Hong Y, Hong S, et al. Genotype-specific influence on nitric oxide synthase gene expression, protein concentrations, and enzyme activity in cultured human endothelial cells. Clin Chem 2003; 49: 847–52. CrossrefGoogle Scholar

About the article

Corresponding author: Prof. John A. Lott, PhD, Department of Pathology, 1645 Neil Avenue, The Ohio State University, Columbus, Ohio 43210, USA


Received: 2004-08-24

Accepted: 2004-11-22

Published Online: 2005-06-01

Published in Print: 2005-01-01


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), Volume 43, Issue 1, Pages 1–16, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/CCLM.2005.001.

Export Citation

©2005 by Walter de Gruyter Berlin New York. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Koji Sawada
World Journal of Gastroenterology, 2006, Volume 12, Number 10, Page 1621
[2]
ICHIRO AKAGI, MASAO MIYASHITA, KEN TAKAHASHI, TAKESHI MATSUTANI, AKIHISA MATSUDA, TSUTOMU NOMURA, HIROSHI MAKINO, NOBUTOSHI HAGIWARA, and EIJI UCHIDA
Experimental and Therapeutic Medicine, 2012, Volume 4, Number 1, Page 84
[3]
Megan S. Lord, Anthony J. Day, Peter Youssef, Lisheng Zhuo, Hideto Watanabe, Bruce Caterson, and John M. Whitelock
Journal of Biological Chemistry, 2013, Volume 288, Number 32, Page 22930
[4]
Qian Chen, Chaoying Hu, Ye Liu, Yun Liu, Wei Wang, Hongchao Zheng, Lianchen Rong, Jingying Jia, Shixuan Sun, Chen Yu, Yan Mei Liu, and Gregory Lesinski
PLOS ONE, 2017, Volume 12, Number 5, Page e0177425
[5]
Masaki Nakamura, Takashi Takeuchi, Tetsushi Kawahara, Jiro Hirose, Kazuyuki Nakayama, Yoshitaka Hosaka, and Shoji Furusako
European Journal of Pharmacology, 2017, Volume 802, Page 60
[6]
Antonio Junior Lepedda, Pierina De Muro, Giampiero Capobianco, and Marilena Formato
Journal of Diabetes and its Complications, 2017, Volume 31, Number 1, Page 149
[7]
Lipeng Wang, Xiao Huang, Guiqing Kong, Haixiao Xu, Jiankui Li, Dong Hao, Tao Wang, Shasha Han, Chunlei Han, Yeying Sun, Xiangyong Liu, and Xiaozhi Wang
Biochemical and Biophysical Research Communications, 2016, Volume 478, Number 2, Page 669
[8]
Junqing Wang, Xuehua Chen, Liping Su, Zhenggang Zhu, Weize Wu, and Yunyun Zhou
Anti-Cancer Drugs, 2016, Volume 27, Number 7, Page 651
[9]
Linlin Ma, Chunsheng Li, Shuo Wang, Junyu Wang, Rui Shao, Chenchen Hang, and Tao Wang
The American Journal of Emergency Medicine, 2016, Volume 34, Number 8, Page 1497
[10]
Pierina De Muro, Giampiero Capobianco, Antonio Junior Lepedda, Gabriele Nieddu, Marilena Formato, Nguyen Hai Quy Tram, Michela Idini, Francesco Dessole, and Salvatore Dessole
Archives of Gynecology and Obstetrics, 2016, Volume 294, Number 5, Page 959
[11]
Mehul Sharma, Yulia Merkulova, Sheetal Raithatha, Leigh G. Parkinson, Yue Shen, Dawn Cooper, and David J. Granville
The FEBS Journal, 2016, Volume 283, Number 9, Page 1734
[12]
Chia-Cheng Su, Kun-Hung Sheng, Shih-Ying Chen, Yeou-Guang Tsay, and Ting-Feng Wu
Urological Science, 2016, Volume 27, Number 4, Page 250
[13]
Dong Han, Wenli Shang, Guizuo Wang, Li Sun, Yingying Zhang, Hongxia Wen, and Lingbin Xu
International Immunopharmacology, 2015, Volume 29, Number 2, Page 377
[14]
Wuquan Li, Xiaochen Qiu, He Jiang, Yan Zhi, Jinfeng Fu, and Jun Liu
International Immunopharmacology, 2015, Volume 29, Number 2, Page 560
[15]
Shveta Bathla, Preeti Rawat, Rubina Baithalu, Munna Lal Yadav, Jasmine Naru, Anurag Tiwari, Sudarshan Kumar, Ashok K. Balhara, Surender Singh, Suman Chaudhary, Rajesh Kumar, Masoud Lotfan, Pradip Behare, Sushil K. Phulia, Tushar K. Mohanty, Jai K. Kaushik, Shivramaiah Nallapeta, Inderjeet Singh, Srinivas K. Ambatipudi, and Ashok K. Mohanty
Journal of Proteomics, 2015, Volume 127, Page 193
[16]
Masaki Nakamura, Takashi Takeuchi, Yoshitaka Maeda, Yoshitaka Hosaka, and Shoji Furusako
Journal of Biophysical Chemistry, 2012, Volume 03, Number 02, Page 132
[17]
Xi Yu, Yi Tian, Ka Wang, Ying-Lin Wang, Guo-Yi Lv, and Guo-Gang Tian
Asian Pacific Journal of Tropical Medicine, 2014, Volume 7, Number 11, Page 918
[18]
Dilip R. Karnad, Rakesh Bhadade, Pradeep K. Verma, Nivedita D. Moulick, Mradul K. Daga, Neelima D. Chafekar, and Shivakumar Iyer
Intensive Care Medicine, 2014, Volume 40, Number 6, Page 830
[19]
Antonio Junior Lepedda, Gabriele Nieddu, Silvia Rocchiccioli, Pietro Fresu, Pierina De Muro, and Marilena Formato
ELECTROPHORESIS, 2013, Volume 34, Number 22-23, Page 3227
[20]
Shuangchun Yang, Shaohui Guo, and Guangxu Yan
International Journal of Chemical Engineering and Applications, 2011, Page 47
[21]
Gabriel Seifert, Michael Seifert, and Uwe A. Wittel
Journal of Surgical Research, 2013, Volume 183, Number 2, Page 983
[22]
Bo Xu, Kun-ping Li, Fei Shen, Huan-qing Xiao, Wen-song Cai, Jiang-lin Li, Qi-cai Liu, and Lin Jia
BioMed Research International, 2013, Volume 2013, Page 1
[23]
Na Huang, Fei Wang, Yingwei Wang, Jiong Hou, Jinbao Li, and Xiaoming Deng
Journal of Surgical Research, 2013, Volume 182, Number 2, Page 296
[24]
Xiaochen Qiu, Shizhao Ji, Junjie Wang, Hengyu Li, Ting Xia, Bohan Pan, Shichu Xiao, and Zhaofan Xia
International Immunopharmacology, 2012, Volume 14, Number 3, Page 289
[25]
Min Soo Kim, Jung Woo Park, Yun Hee Lim, Byung Hoon Yoo, Jun Heum Yon, and Dong Won Kim
Korean Journal of Anesthesiology, 2012, Volume 62, Number 3, Page 240
[26]
Qiuping Yang, Xingang Liu, Min Liu, Ling Zhang, and Yinghui Guan
Biologicals, 2010, Volume 38, Number 5, Page 552
[27]
Il-Woo Shin, In-Seok Jang, Seung-Min Lee, Kyeong-Eon Park, Seong-Ho Ok, Ju-Tae Sohn, Heon-Keun Lee, and Young-Kyun Chung
Korean Journal of Anesthesiology, 2011, Volume 61, Number 6, Page 499
[28]
Huayu Yang, Yilei Mao, Xin Lu, Xinting Sang, Shunda Du, Haitao Zhao, Yiyao Xu, Haifeng Xu, Zhiying Yang, Tianyi Chi, Shouxian Zhong, and Jiefu Huang
The American Journal of Surgery, 2011, Volume 202, Number 2, Page 151
[29]
Satoshi Gando, Mineji Hayakawa, Atsushi Sawamura, Hirokatsu Hoshino, Akiko Oshiro, Nobuhiko Kubota, and Subrina Jesmin
Thrombosis Research, 2007, Volume 121, Number 1, Page 67
[30]
Ikuko Kakizaki, Ryouki Takahashi, Nobuyuki Ibori, Kaoru Kojima, Teruno Takahashi, Masanori Yamaguchi, Atushi Kon, and Keiichi Takagaki
Biochimica et Biophysica Acta (BBA) - General Subjects, 2007, Volume 1770, Number 2, Page 171
[31]
Glen L Hortin and Denis Sviridov
Pharmacogenomics, 2007, Volume 8, Number 3, Page 237
[32]
Jong In Han
Korean Journal of Anesthesiology, 2010, Volume 58, Number 4, Page 325
[33]
Masako Hayashi, Atsuko Oya, Hidehiko Miyake, Akihito Nakai, and Toshiyuki Takeshita
Journal of Nippon Medical School, 2010, Volume 77, Number 2, Page 80
[34]
Jin Young Lee, Ji Young Lee, Jin Young Chon, Ho Sik Moon, and Sung Jin Hong
Korean Journal of Anesthesiology, 2010, Volume 58, Number 1, Page 25
[35]
Kyung Hye Park, Kang Hyun Lee, Hyun Kim, and Sung Oh Hwang
Journal of Korean Medical Science, 2010, Volume 25, Number 1, Page 128
[36]
Mineji Hayakawa, Atsushi Sawamura, Yuichiro Yanagida, Masahiro Sugano, Nobuhiko Kubota, Hirokatsu Hoshino, and Satoshi Gando
Shock, 2007, Page 1
[37]
Mohammad Said Ashenagar, Kazuko Sugihara, Akira Maeda, Rieko Isogai, Masae Takahashi, Kinuyo Aisu, Akira Horiuchi, Yoshinori Aragane, Akira Kawada, and Tadashi Tezuka
Archives of Dermatological Research, 2007, Volume 298, Number 9, Page 421
[38]
Michael J. Pugia, Saeed A. Jortani, Manju Basu, Ronald Sommer, Hai-Hang Kuo, Solomon Murphy, Doug Williamson, James Vranish, Patrick J. Boyle, Danny Budzinski, Roland Valdes, and Subhash C. Basu
Glycoconjugate Journal, 2006, Volume 24, Number 1, Page 5

Comments (0)

Please log in or register to comment.
Log in