Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year


IMPACT FACTOR 2016: 3.432

CiteScore 2016: 2.21

SCImago Journal Rank (SJR) 2016: 1.000
Source Normalized Impact per Paper (SNIP) 2016: 1.112

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 43, Issue 10 (Oct 2005)

Issues

Betaine: a key modulator of one-carbon metabolism and homocysteine status

Per Magne Ueland
  • LOCUS for Homocysteine and Related Vitamins, Institute of Medicine, University of Bergen, Bergen, Norway
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pål I. Holm
  • LOCUS for Homocysteine and Related Vitamins, Institute of Medicine, University of Bergen, Bergen, Norway
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Steinar Hustad
  • LOCUS for Homocysteine and Related Vitamins, Institute of Medicine, University of Bergen, Bergen, Norway
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-09-21 | DOI: https://doi.org/10.1515/CCLM.2005.187

Abstract

Betaine serves as a methyl donor in a reaction converting homocysteine to methionine, catalysed by the enzyme betaine-homocysteine methyltransferase. It has been used for years to lower the concentration of plasma total homocysteine (tHcy) in patients with homocystinuria, and has recently been shown to reduce fasting and in particular post-methionine load (PML) tHcy in healthy subjects.

Betaine exists in plasma at concentrations of about 30μmol/L; it varies 10-fold (from 9 to 90μmol/L) between individuals, but the intra-individual variability is small. Major determinants are choline, dimethylglycine and folate in plasma, folic acid intake and gender.

Recent studies have demonstrated that plasma betaine is a stronger determinant of PML tHcy than are vitamin B6 and folate. The betaine-PML tHcy relationship is attenuated after supplementation with B-vitamins, and is most pronounced in subjects with low folate. Betaine shows a weaker association with fasting tHcy (than with PML tHcy), and also this association is most pronounced in subjects with low folate. In pregnancy, plasma betaine declines until gestational week 20, and thereafter remains constant. From gestational week 20 onwards, fasting tHcy shows a strong inverse association with plasma betaine, and betaine becomes a stronger predictor than folate of fasting tHcy.

To conclude, betaine status is a component of an individual's biochemical make-up with ramifications to one-carbon metabolism. Betaine status should be investigated in pathologies related to altered metabolism of homocysteine and folate, including cardiovascular disease, cancer and neural tube defects.

Keywords: betaine; choline; dimethylglycine; folate; homocysteine

References

  • 1.

    Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN. Living with water stress: evolution of osmolyte systems. Science 1982; 217:1214–22.Google Scholar

  • 2.

    Lang F, Busch GL, Volkl H. The diversity of volume regulatory mechanisms. Cell Physiol Biochem 1998; 8:1–45.CrossrefGoogle Scholar

  • 3.

    Craig SA. Betaine in human nutrition. Am J Clin Nutr 2004; 80:539–49.Google Scholar

  • 4.

    Sakamoto A, Nishimura Y, Ono H, Sakura N. Betaine and homocysteine concentrations in foods. Pediatr Int 2002; 44:409–13.CrossrefGoogle Scholar

  • 5.

    Zeisel SH, Mar MH, Howe JC, Holden JM. Concentrations of choline-containing compounds and betaine in common foods. J Nutr 2003; 133:1302–7.Google Scholar

  • 6.

    Slow S, Donaggio M, Cressey PJ, Lever M, George PM, Chambers ST. The betaine content of New Zealand foods and estimated intake in the New Zealand diet. J Food Comp Anal 2005; 18:473–85.CrossrefGoogle Scholar

  • 7.

    Schwahn BC, Hafner D, Hohlfeld T, Balkenhol N, Laryea MD, Wendel U. Pharmacokinetics of oral betaine in healthy subjects and patients with homocystinuria. Br J Clin Pharmacol 2003; 55:6–13.CrossrefGoogle Scholar

  • 8.

    Rhodes D, Hanson AD. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Rev Plant Physiol Mol Biol 1993; 44:357–84.CrossrefGoogle Scholar

  • 9.

    Kempson SA, Montrose MH. Osmotic regulation of renal betaine transport: transcription and beyond. Pflugers Arch 2004; 449:227–34.Google Scholar

  • 10.

    Zeisel SH, Blusztajn JK. Choline and human nutrition. Annu Rev Nutr 1994; 14:269–96.CrossrefGoogle Scholar

  • 11.

    Zeisel SH. Choline: an essential nutrient for humans. Nutrition 2000; 16:669–71.CrossrefGoogle Scholar

  • 12.

    Uchida T, Yamashita S. Molecular cloning, characterization, and expression in Escherichia coli of a cDNA encoding mammalian choline kinase. J Biol Chem 1992; 267:10156–62.Google Scholar

  • 13.

    Porter RK, Scott JM, Brand MD. Choline transport into rat liver mitochondria. Characterization and kinetics of a specific transporter. J Biol Chem 1992; 267:14637–46.Google Scholar

  • 14.

    Park EI, Garrow TA. Interaction between dietary methionine and methyl donor intake on rat liver betaine-homocysteine methyltransferase gene expression and organization of the human gene. J Biol Chem 1999; 274:7816–24.Google Scholar

  • 15.

    Schliess F, Haussinger D. The cellular hydration state: a critical determinant for cell death and survival. Biol Chem 2002; 383:577–83.Google Scholar

  • 16.

    Alfieri RR, Cavazzoni A, Petronini PG, Bonelli MA, Caccamo AE, Borghetti AF, et al. Compatible osmolytes modulate the response of porcine endothelial cells to hypertonicity and protect them from apoptosis. J Physiol 2002; 540:499–508.Google Scholar

  • 17.

    Delgado-Reyes CV, Garrow TA. High sodium chloride intake decreases betaine-homocysteine S-methyltransferase expression in guinea pig liver and kidney. Am J Physiol Regul Integr Comp Physiol 2005; 288:R182–7.Google Scholar

  • 18.

    Finkelstein JD. Methionine metabolism in mammals. J Nutr Biochem 1990; 1:228–37.CrossrefGoogle Scholar

  • 19.

    Finkelstein JD, Martin JJ. Methionine metabolism in mammals. Distribution of homocysteine between competing pathways. J Biol Chem 1984; 259:9508–13.Google Scholar

  • 20.

    Schwahn BC, Chen Z, Laryea MD, Wendel U, Lussier-Cacan S, Genest J Jr, et al. Homocysteine-betaine interactions in a murine model of 5,10-methylenetetrahydrofolate reductase deficiency. FASEB J 2003; 17:512–4.Google Scholar

  • 21.

    Schwahn BC, Laryea MD, Chen Z, Melnyk S, Pogribny I, Garrow T, et al. Betaine rescue of an animal model with methylenetetrahydrofolate reductase deficiency. Biochem J 2004; 382:831–40.Google Scholar

  • 22.

    Niculescu MD, Zeisel SH. Diet, methyl donors and DNA methylation: interactions between dietary folate, methionine and choline. J Nutr 2002; 132:2333S–5S.Google Scholar

  • 23.

    Selhub J, Miller JW. The pathogenesis of homocysteinemia: interruption of the coordinate regulation by S-adenosylmethionine of the remethylation and transsulfuration of homocysteine. Am J Clin Nutr 1992; 55:131–8.Google Scholar

  • 24.

    Reed MC, Nijhout HF, Sparks R, Ulrich CM. A mathematical model of the methionine cycle. J Theor Biol 2004; 226:33–43.CrossrefGoogle Scholar

  • 25.

    Allen RH, Stabler SP, Lindenbaum J. Serum betaine, N,N-dimethylglycine and N-methylglycine levels in patients with cobalamin and folate deficiency and related inborn errors of metabolism. Metabolism 1993; 42:1448–60.CrossrefGoogle Scholar

  • 26.

    Lever M, Sizeland PC, Bason LM, Hayman CM, Chambers ST. Glycine betaine and proline betaine in human blood and urine. Biochim Biophys Acta 1994; 1200:259–64.Google Scholar

  • 27.

    Lever M, Sizeland PC, Bason LM, Hayman CM, Robson RA, Chambers ST. Abnormal glycine betaine content of the blood and urine of diabetic and renal patients. Clin Chim Acta 1994; 230:69–79.Google Scholar

  • 28.

    Holm PI, Ueland PM, Kvalheim G, Lien EA. Determination of choline, betaine, and dimethylglycine in plasma by a high-throughput method based on normal-phase chromatography-tandem mass spectrometry. Clin Chem 2003; 49:286–94.CrossrefGoogle Scholar

  • 29.

    Holm PI, Bleie O, Ueland PM, Lien EA, Refsum H, Nordrehaug JE, et al. Betaine as a determinant of postmethionine load total plasma homocysteine before and after B-vitamin supplementation. Arterioscler Thromb Vasc Biol 2004; 24:301–7.CrossrefGoogle Scholar

  • 30.

    Velzing-Aarts FV, Holm PI, Fokkema MR, van der Dijs FP, Ueland PM, Muskiet FA. Plasma choline, betaine and their relation to plasma homocysteine in normal pregnancy. Am J Clin Nutr 2005; 81:1383–9.Google Scholar

  • 31.

    Finkelstein JD, Kyle WE, Harris BJ. Methionine metabolism in mammals. Regulation of homocysteine methyltransferases in rat tissue. Arch Biochem Biophys 1971; 146:84–92.Google Scholar

  • 32.

    Lever M, Sizeland PC, Frampton CM, Chambers ST. Short and long-term variation of plasma glycine betaine concentrations in humans. Clin Biochem 2004; 37:184–90.CrossrefGoogle Scholar

  • 33.

    Lever M, George PM, Dellow WJ, Scott RS, Chambers ST. Homocysteine, glycine betaine, and N,N-dimethylglycine in patients attending a lipid clinic. Metabolism 2005; 54:1–14.CrossrefGoogle Scholar

  • 34.

    Melse-Boonstra A, Holm PI, Ueland P, Olthof M, Clarke R, Verhoef P. Betaine concentration as a determinant of fasting total homocysteine concentrations and the effect of folic acid supplementation. Am J Clin Nutr 2005; 81:1378–82.Google Scholar

  • 35.

    Holm PI, Ueland PM, Vollset SE, Midttun O, Blom HJ, Keijzer MB, et al. Betaine and folate status as cooperative determinants of plasma homocysteine in humans. Arterioscler Thromb Vasc Biol 2005; 25:379–85.CrossrefGoogle Scholar

  • 36.

    Sizeland PC, Chambers ST, Lever M, Bason LM, Robson RA. Short-term response of nonurea organic osmolytes in human kidney to a water load and water deprivation. Am J Physiol 1995; 268:F227–33.Google Scholar

  • 37.

    McGregor DO, Dellow WJ, Lever M, George PM, Robson RA, Chambers ST. Dimethylglycine accumulates in uremia and predicts elevated plasma homocysteine concentrations. Kidney Int 2001; 59:2267–72.CrossrefGoogle Scholar

  • 38.

    Dellow WJ, Chambers ST, Lever M, Lunt H, Robson RA. Elevated glycine betaine excretion in diabetes mellitus patients is associated with proximal tubular dysfunction and hyperglycemia. Diabetes Res Clin Pract 1999; 43:91–9.CrossrefGoogle Scholar

  • 39.

    Dellow WJ, Chambers ST, Barrell GK, Lever M, Robson RA. Glycine betaine excretion is not directly linked to plasma glucose concentrations in hyperglycaemia. Diabetes Res Clin Pract 2001; 52:165–9.CrossrefGoogle Scholar

  • 40.

    Yap S. Classical homocystinuria: vascular risk and its prevention. J Inherit Metab Dis 2003; 26:259–65.CrossrefGoogle Scholar

  • 41.

    Ogier de Baulny H, Gerard M, Saudubray JM, Zittoun J. Remethylation defects: guidelines for clinical diagnosis and treatment. Eur J Pediatr 1998; 157(Suppl 2):S77–83.Google Scholar

  • 42.

    Olthof MR, Verhoef P. Effects of betaine intake on plasma homocysteine concentrations and consequences for health. Curr Drug Metab 2005; 6:15–22.CrossrefGoogle Scholar

  • 43.

    Steenge GR, Verhoef P, Katan MB. Betaine supplementation lowers plasma homocysteine in healthy men and women. J Nutr 2003; 133:1291–5.Google Scholar

  • 44.

    Olthof MR, van Vliet T, Boelsma E, Verhoef P. Low dose betaine supplementation leads to immediate and long term lowering of plasma homocysteine in healthy men and women. J Nutr 2003; 133:4135–8.Google Scholar

  • 45.

    Yagisawa M, Okawa N, Shigematsu N, Nakata R. Effects of intravenous betaine on methionine-loading-induced plasma homocysteine elevation in rats. J Nutr Biochem 2004; 15:666–71.CrossrefGoogle Scholar

  • 46.

    Schwab U, Torronen A, Toppinen L, Alfthan G, Saarinen M, Aro A, et al. Betaine supplementation decreases plasma homocysteine concentrations but does not affect body weight, body composition, or resting energy expenditure in human subjects. Am J Clin Nutr 2002; 76:961–7.Google Scholar

  • 47.

    Alfthan G, Tapani K, Nissinen K, Saarela J, Aro A. The effect of low doses of betaine on plasma homocysteine in healthy volunteers. Br J Nutr 2004; 92:665–9.CrossrefGoogle Scholar

  • 48.

    McGregor DO, Dellow WJ, Robson RA, Lever M, George PM, Chambers ST. Betaine supplementation decreases post-methionine hyperhomocysteinemia in chronic renal failure. Kidney Int 2002; 61:1040–6.CrossrefGoogle Scholar

  • 49.

    Olthof MR, Brink EJ, Katan MB, Verhoef P. Choline supplemented as phosphatidylcholine 1 line decreases fasting and post-methionine plasma homocysteine concentrations in healthy men. Am J Clin Nutr 2005; 82:111–7.Google Scholar

  • 50.

    da Costa KA, Gaffney CE, Fischer LM, Zeisel SH. Choline deficiency in mice and humans is associated with increased plasma homocysteine concentration after a methionine load. Am J Clin Nutr 2005; 81:440–4.Google Scholar

  • 51.

    Zeisel SH, Da Costa KA, Franklin PD, Alexander EA, Lamont JT, Sheard NF, et al. Choline, an essential nutrient for humans. FASEB J 1991; 5:2093–8.Google Scholar

  • 52.

    Buchman AL, Dubin M, Jenden D, Moukarzel A, Roch MH, Rice K, et al. Lecithin increases plasma free choline and decreases hepatic steatosis in long-term total parenteral nutrition patients. Gastroenterology 1992; 102:1363–70.CrossrefGoogle Scholar

  • 53.

    Sugiyama K, Mochizuki C, Muramatsu K. Comparative effects of choline chloride and phosphatidylcholine on plasma and liver lipid levels in rats fed a choline-deficient high cholesterol diet. J Nutr Sci Vitaminol (Tokyo) 1987; 33:369–76.CrossrefGoogle Scholar

  • 54.

    Mason TM. The role of factors that regulate the synthesis and secretion of very-low-density lipoprotein by hepatocytes. Crit Rev Clin Lab Sci 1998; 35:461–87.CrossrefGoogle Scholar

  • 55.

    Schwahn BC, Brilakis IS, Lennon RJ, Laryea MD, Berger PB, Rozen R. Betaine is a determinant in of plasma lipids in men. 4th Conference on Hyperhomocysteinemia, Apr 14–16, 2005. Clin Chem Lab Med 2005; 43:A31.Google Scholar

  • 56.

    Refsum H, Smith AD, Ueland PM, Nexo E, Clarke R, McPartlin J, et al. Facts and recommendations about total homocysteine determinations: an expert opinion. Clin Chem 2004; 50:3–32.CrossrefGoogle Scholar

  • 57.

    Molloy AM, Mills BJ, Cox C, Daly SF, Conley M, Brody LC, et al. Choline and homocysteine inter-relationships in neonate and maternal plasma at delivery. Am J Clin Nutr 2005; in press.Google Scholar

  • 58.

    Holm PI, Hustad S, Schneede J, Vollset SE, Hoff G, Ueland PM. Betaine as determinant of fasting plasma homocysteine: effect is modified by folate status and the MTHFR 677C-> T genotype [abstract]. 5th International Conference on Homocysteine Metabolism, Milano, June 26–30, 2005.Google Scholar

  • 59.

    Suh JR, Herbig AK, Stover PJ. New perspectives on folate catabolism. Annu Rev Nutr 2001; 21:255–82.CrossrefGoogle Scholar

About the article

Corresponding author: Dr. Per Magne Ueland, LOCUS for Homocysteine and Related Vitamins, Armauer Hansens hus, University of Bergen, 5021 Bergen, Norway Phone: +47-5597-3147, Fax: +47-5597-4605,


Published Online: 2011-09-21

Published in Print: 2005-10-01


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/CCLM.2005.187.

Export Citation

©2005 by Walter de Gruyter Berlin New York. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
C. Dupuis, J.Y. Berthon, J. Larue, S. Rougé, M. Filaire, and E. Filaire
Science & Sports, 2017
[2]
N. Friedrich, T. Skaaby, M. Pietzner, K. Budde, B.H. Thuesen, M. Nauck, and A. Linneberg
Diabetes & Metabolism, 2017
[3]
René L. Jacobs, Yang Zhao, Debby P. Y. Koonen, Torunn Sletten, Brian Su, Susanne Lingrell, Guoqing Cao, David A. Peake, Ming-Shang Kuo, Spencer D. Proctor, Brian P. Kennedy, Jason R. B. Dyck, and Dennis E. Vance
Journal of Biological Chemistry, 2010, Volume 285, Number 29, Page 22403
[4]
Chad Brocker, Natalie Lassen, Tia Estey, Aglaia Pappa, Miriam Cantore, Valeria V. Orlova, Triantafyllos Chavakis, Kathryn L. Kavanagh, Udo Oppermann, and Vasilis Vasiliou
Journal of Biological Chemistry, 2010, Volume 285, Number 24, Page 18452
[5]
Daolin Mou, Jun Wang, Hong Liu, Yuling Chen, Lianqiang Che, Zhengfeng Fang, Shengyu Xu, Yan Lin, Bin Feng, Jian Li, and De Wu
Nutrition, 2017
[7]
Michael Lever, Peter M. George, Wendy Atkinson, Jane L. Elmslie, Sandy Slow, Sarah L. Molyneux, Richard W. Troughton, A. Mark Richards, Christopher M. Frampton, Stephen T. Chambers, and Qi Sun
PLoS ONE, 2012, Volume 7, Number 3, Page e32460
[8]
Peter R. Shewry, Delia I. Corol, Huw D. Jones, Michael H. Beale, and Jane L. Ward
Molecular Nutrition & Food Research, 2017, Volume 61, Number 7, Page 1600807
[9]
Ville M. Koistinen and Kati Hanhineva
Molecular Nutrition & Food Research, 2017, Volume 61, Number 7, Page 1600627
[10]
Michael Lever, Peter M. George, Sandy Slow, David Bellamy, Joanna M. Young, Markus Ho, Christopher J. McEntyre, Jane L. Elmslie, Wendy Atkinson, Sarah L. Molyneux, Richard W. Troughton, Christopher M. Frampton, A. Mark Richards, Stephen T. Chambers, and Giuseppe Andò
PLoS ONE, 2014, Volume 9, Number 12, Page e114969
[11]
Hall Schartum-Hansen, Per M. Ueland, Eva R. Pedersen, Klaus Meyer, Marta Ebbing, Øyvind Bleie, Gard F. T. Svingen, Reinhard Seifert, Bjørn E. Vikse, Ottar Nygård, and Karin Jandeleit-Dahm
PLoS ONE, 2013, Volume 8, Number 8, Page e69454
[12]
EFSA Journal, 2016, Volume 14, Number 8
[13]
Hee-Sook Park, Haeng Jeon Hur, Soon-Hee Kim, Su-Jin Park, Moon Ju Hong, Mi Jeong Sung, Dae Young Kwon, and Myung-Sunny Kim
Molecular Nutrition & Food Research, 2016, Volume 60, Number 9, Page 1944
[14]
Rea Bingula, Carmen Dupuis, Chantal Pichon, Jean-Yves Berthon, Marc Filaire, Lucie Pigeon, and Edith Filaire
Journal of Oncology, 2016, Volume 2016, Page 1
[15]
Mauro Forteschi, Angelo Zinellu, Stefano Assaretti, Arduino A. Mangoni, Gianfranco Pintus, Ciriaco Carru, and Salvatore Sotgia
Analytical and Bioanalytical Chemistry, 2016, Volume 408, Number 26, Page 7505
[16]
İlknur Bingül, A. Fatih Aydın, Canan Başaran-Küçükgergin, Işın Doğan-Ekici, Jale Çoban, Semra Doğru-Abbasoğlu, and Müjdat Uysal
International Immunopharmacology, 2016, Volume 39, Page 199
[17]
Kersti K. Linask and Mingda Han
Birth Defects Research Part A: Clinical and Molecular Teratology, 2016, Volume 106, Number 9, Page 749
[18]
İlknur Bingül, Canan Başaran-Küçükgergin, A.Fatih Aydın, Jale Çoban, Işın Doğan-Ekici, Semra Doğru-Abbasoğlu, and Müjdat Uysal
Environmental Toxicology and Pharmacology, 2016, Volume 45, Page 170
[19]
Hyun-Jun Jang, Ji Won Kim, Sung Ha Ryu, You Jin Kim, Oran Kwon, Siwon Kim, Suhkmann Kim, and Kyu-Bong Kim
Journal of Functional Foods, 2016, Volume 24, Page 112
[20]
Yu-Feng Du, Fang-Yu Lin, Wei-Qing Long, Wei-Ping Luo, Bo Yan, Ming Xu, Xiong-Fei Mo, and Cai-Xia Zhang
European Journal of Nutrition, 2017, Volume 56, Number 3, Page 1329
[21]
Ariana Ferrari, Aline de Carvalho, Josiane Steluti, Juliana Teixeira, Dirce Marchioni, and Samuel Aguiar
Nutrients, 2015, Volume 7, Number 6, Page 4318
[22]
Jaana A. Hartiala, W. H. Wilson Tang, Zeneng Wang, Amanda L. Crow, Alexandre F. R. Stewart, Robert Roberts, Ruth McPherson, Jeanette Erdmann, Christina Willenborg, Stanley L. Hazen, and Hooman Allayee
Nature Communications, 2016, Volume 7, Page 10558
[23]
Rolf K. Berge, Marie S. Ramsvik, Pavol Bohov, Asbjørn Svardal, Jan E. Nordrehaug, Espen Rostrup, Inge Bruheim, and Bodil Bjørndal
Lipids in Health and Disease, 2015, Volume 14, Number 1
[24]
Peter R. Shewry and Sandra J. Hey
Food and Energy Security, 2015, Volume 4, Number 3, Page 178
[25]
Anna-Lena Lindberg, Eva-Charlotte Ekström, Barbro Nermell, Mahfuzar Rahman, Bo Lönnerdal, Lars-Åke Persson, and Marie Vahter
Environmental Research, 2008, Volume 106, Number 1, Page 110
[26]
Giel-Jan de Vries, Anja Lok, Roel Mocking, Johanna Assies, Aart Schene, and Miranda Olff
Journal of Affective Disorders, 2015, Volume 184, Page 277
[27]
Jenna Pekkinen, Natalia Rosa-Sibakov, Valerie Micard, Pekka Keski-Rahkonen, Marko Lehtonen, Kaisa Poutanen, Hannu Mykkänen, and Kati Hanhineva
Molecular Nutrition & Food Research, 2015, Volume 59, Number 8, Page 1550
[28]
Claire Galland, Célie Dupuy, Véronique Loizeau, Morgane Danion, Michel Auffret, Louis Quiniou, Jean Laroche, and Vianney Pichereau
Marine Pollution Bulletin, 2015, Volume 95, Number 2, Page 646
[29]
Mette Skou Hedemann, Peter Kappel Theil, Helle Nygaard Lærke, and Knud Erik Bach Knudsen
Journal of Agricultural and Food Chemistry, 2015, Volume 63, Number 10, Page 2725
[30]
M. Dippe, W. Brandt, H. Rost, A. Porzel, J. Schmidt, and L. A. Wessjohann
Chem. Commun., 2015, Volume 51, Number 17, Page 3637
[31]
Icksoo Lee
Biochemical and Biophysical Research Communications, 2015, Volume 456, Number 2, Page 621
[32]
W.H. Wilson Tang and Stanley L. Hazen
Journal of Clinical Investigation, 2014, Volume 124, Number 10, Page 4204
[33]
Masoud Alirezaei, Gholamali Jelodar, Parvin Niknam, Zeynab Khoshdel, and Morteza Yavari
Comparative Clinical Pathology, 2014, Volume 23, Number 3, Page 551
[34]
Dmitriy M. Makarov, Gennadiy I. Egorov, Yulia A. Fadeeva, and Arkadiy M. Kolker
Thermochimica Acta, 2014, Volume 585, Page 36
[35]
Francesco Gatto, Intawat Nookaew, and Jens Nielsen
Proceedings of the National Academy of Sciences, 2014, Volume 111, Number 9, Page E866
[36]
Hussain Mohamad Awwad, Susanne H. Kirsch, Juergen Geisel, and Rima Obeid
Journal of Chromatography B, 2014, Volume 957, Page 41
[37]
Francesca Salvi and Giovanni Gadda
Archives of Biochemistry and Biophysics, 2013, Volume 537, Number 2, Page 243
[38]
Joe Yuezhou Yu and Phillip L. Pearl
Epilepsy Research and Treatment, 2013, Volume 2013, Page 1
[39]
Lei Zhang, Zhiqiang Cao, Tao Bai, Louisa Carr, Jean-Rene Ella-Menye, Colleen Irvin, Buddy D Ratner, and Shaoyi Jiang
Nature Biotechnology, 2013, Volume 31, Number 6, Page 553
[40]
Marc P. McRae
Journal of Chiropractic Medicine, 2013, Volume 12, Number 1, Page 20
[41]
Robert F. Bertolo and Laura E. McBreairty
Current Opinion in Clinical Nutrition and Metabolic Care, 2013, Volume 16, Number 1, Page 102
[42]
Hussam Al-Humadi, Apostolos Zarros, Argyro Kyriakaki, Rafal Al-Saigh, and Charis Liapi
Scandinavian Journal of Gastroenterology, 2012, Volume 47, Number 8-9, Page 874
[43]
Jasmohan S. Bajaj, Patrick M. Gillevet, Neeral R. Patel, Vishwadeep Ahluwalia, Jason M Ridlon, Birgit Kettenmann, Christine M. Schubert, Masoumeh Sikaroodi, Douglas M. Heuman, Mary M. E. Crossey, Debulon E. Bell, Philip B. Hylemon, Panos P. Fatouros, and Simon D. Taylor-Robinson
Metabolic Brain Disease, 2012, Volume 27, Number 2, Page 205
[44]
Rima Obeid and Wolfgang Herrmann
FEBS Letters, 2009, Volume 583, Number 8, Page 1215
[46]
Joan Oliva, Jin Zhong, Virgil S. Buslon, and Samuel W. French
Experimental and Molecular Pathology, 2012, Volume 92, Number 1, Page 126
[47]
Wu-Ping Sun, Da Li, Yong-Zhi Lun, Xiao-Jie Gong, Shen-Xia Sun, Ming Guo, Li-Xin Jing, Li-Bin Zhang, Fu-Cheng Xiao, and Shi-Sheng Zhou
Hypertension Research, 2012, Volume 35, Number 2, Page 180
[48]
Kristin Braekke, Per Magne Ueland, Nina Kittelsen Harsem, Anette Karlsen, Rune Blomhoff, and Anne Cathrine Staff
Pediatric Research, 2007, Volume 62, Number 3, Page 319
[49]
Michael Lever, Sandy Slow, Peter M. George, and Stephen T. Chambers
Clinical Biochemistry, 2012, Volume 45, Number 1-2, Page 154
[50]
Julie M. W. Wallace, Jacqueline M. McCormack, Helene McNulty, Paula M. Walsh, Paula J. Robson, Maxine P. Bonham, Maresa E. Duffy, Mary Ward, Anne M. Molloy, John M. Scott, Per M. Ueland, and J. J. Strain
British Journal of Nutrition, 2012, Volume 108, Number 07, Page 1264
[51]
Shi-Sheng Zhou, Yi-Ming Zhou, Da Li, and Yong-Zhi Lun
Hypertension Research, 2011, Volume 34, Number 12, Page 1239
[52]
Michael Lever, Wendy Atkinson, Peter C.B. Sizeland, Stephen T. Chambers, and Peter M. George
Clinical Biochemistry, 2007, Volume 40, Number 7, Page 447
[53]
Michael Lever and Sandy Slow
Clinical Biochemistry, 2010, Volume 43, Number 9, Page 732
[54]
Michael Lever, Wendy Atkinson, Peter M. George, and Stephen T. Chambers
Clinical Biochemistry, 2007, Volume 40, Number 16-17, Page 1225
[55]
Jing-Bo Peng, Hong-Mei Jia, Tao Xu, Yue-Tao Liu, Hong-Wu Zhang, Ling-Ling Yu, Da-Yong Cai, and Zhong-Mei Zou
Process Biochemistry, 2011, Volume 46, Number 12, Page 2240
[56]
Shiro MITSUYA, Takashi FUJIWARA, Tasuku HATTORI, and Tetsuko TAKABE
KAGAKU TO SEIBUTSU, 2010, Volume 48, Number 7, Page 478
[58]
Juan Perozo-Romero, Mery Guerra-Velásquez, Eduardo Reyna-Villasmil, Jorly Mejia-Montilla, Nadia Reyna-Villasmil, Duly Torres-Cepeda, Joel Santos-Bolívar, and Helen de Nobrega-Correa
Progresos de Obstetricia y Ginecología, 2011, Volume 54, Number 8, Page 408
[59]
Josefine Nestler, Wolfgang Schütz, and Frank Hochholdinger
Journal of Proteome Research, 2011, Volume 10, Number 5, Page 2525
[60]
Alastair B. Ross, Stephen J. Bruce, Anny Blondel-Lubrano, Sylviane Oguey-Araymon, Maurice Beaumont, Alexandre Bourgeois, Corine Nielsen-Moennoz, Mario Vigo, Laurent-Bernard Fay, Sunil Kochhar, Rodrigo Bibiloni, Anne-Cécile Pittet, Shahram Emady-Azar, Dominik Grathwohl, and Serge Rezzi
British Journal of Nutrition, 2011, Volume 105, Number 10, Page 1492
[61]
Takushi Ooga, Hajime Sato, Atsushi Nagashima, Kazunori Sasaki, Masaru Tomita, Tomoyoshi Soga, and Yoshiaki Ohashi
Molecular BioSystems, 2011, Volume 7, Number 4, Page 1217
[62]
John F. Lechner, Li-Shu Wang, Claudio M. Rocha, Bethany Larue, Cassandra Henry, Colleen M. McIntyre, Kenneth M. Riedl, Steven J. Schwartz, and Gary D. Stoner
Journal of Medicinal Food, 2010, Volume 13, Number 3, Page 733
[63]
Per Magne Ueland, Øivind Midttun, Amrei Windelberg, Asbjørn Svardal, Rita Skålevik, and Steinar Hustad
Clinical Chemical Laboratory Medicine, 2007, Volume 45, Number 12
[64]
Per Magne Ueland
Journal of Inherited Metabolic Disease, 2011, Volume 34, Number 1, Page 3
[65]
U Schwab, G Alfthan, A Aro, and M Uusitupa
European Journal of Clinical Nutrition, 2011, Volume 65, Number 1, Page 70
[66]
Adrianna Mostowska, Kamil K. Hozyasz, Barbara Biedziak, Jan Misiak, and Pawel P. Jagodzinski
European Journal of Oral Sciences, 2010, Volume 118, Number 4, Page 325
[67]
Zhiqiang Cao, Qiuming Yu, Hong Xue, Gang Cheng, and Shaoyi Jiang
Angewandte Chemie, 2010, Volume 122, Number 22, Page 3859
[68]
Zhiqiang Cao, Qiuming Yu, Hong Xue, Gang Cheng, and Shaoyi Jiang
Angewandte Chemie International Edition, 2010, Volume 49, Number 22, Page 3771
[69]
Li Li, Eva-Charlotte Ekström, Walter Goessler, Bo Lönnerdal, Barbro Nermell, Mohammad Yunus, Anisur Rahman, Shams El Arifeen, Lars Åke Persson, and Marie Vahter
Environmental Health Perspectives, 2007, Volume 116, Number 3, Page 315
[70]
Eun Kyung Go, Kyung Jin Jung, Ji Min Kim, Hyunae Lim, Hyeang Kwan Lim, Byung Pal Yu, and Hae Young Chung
Biological & Pharmaceutical Bulletin, 2007, Volume 30, Number 12, Page 2244
[71]
Simone J. P. M. Eussen, Per M. Ueland, Robert Clarke, Henk J. Blom, Willibrord H. L. Hoefnagels, Wija A. van Staveren, and Lisette C. P. G. M. de Groot
British Journal of Nutrition, 2007, Volume 98, Number 05

Comments (0)

Please log in or register to comment.
Log in