Jump to ContentJump to Main Navigation
Show Summary Details

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year


IMPACT FACTOR increased in 2015: 3.017
Rank 5 out of 30 in category Medical Laboratory Technology in the 2014 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2015: 0.873
Source Normalized Impact per Paper (SNIP) 2015: 0.982
Impact per Publication (IPP) 2015: 2.238

Online
ISSN
1437-4331
See all formats and pricing
Volume 43, Issue 10 (Oct 2005)

Issues

Molecular targeting by homocysteine: a mechanism for vascular pathogenesis

Donald W. Jacobsen
  • Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
/ Otilia Catanescu
  • Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States of America
/ Patricia M. DiBello
  • Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States of America
/ John C. Barbato
  • Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States of America
Published Online: 2011-09-21 | DOI: https://doi.org/10.1515/CCLM.2005.188

Abstract

Hyperhomocysteinemia is an independent risk factor for cardiovascular disease. Although there is a growing body of evidence that homocysteine plays a causal role in atherogenesis, specific mechanisms to explain the underlying pathology have remained elusive. This review focuses on chemistry unique to the homocysteine molecule to explain its inherent cytotoxicity. Thus, the high pKa of the sulfhydryl group (pKa=10.0) of homocysteine underlies its ability to form stable disulfide bonds with protein cysteine residues, and in the process, alters or impairs the function of the protein. Albumin, fibronectin, transthyretin, annexin II, and factor V have now been identified as molecular targets for homocysteine, and in the case of albumin, the mechanism of targeting has been elucidated.

Keywords: albumin; atherogenesis; disulfide bond; glutathione peroxidase; homocysteine; hyperhomocysteinemia; molecular targeting; pKa; sulfhydryl group; vascular pathogenesis

References

  • 1.

    Finkelstein JD. Methionine metabolism in mammals. J Nutr Biochem 1990; 1:228–37. [Crossref]

  • 2.

    Chen P, Poddar R, Tipa EV, DiBello PM, Moravec CD, Robinson K, et al. Homocysteine metabolism in cardiovascular cells and tissues: implications for hyperhomocysteinemia and cardiovascular disease. Adv Enzyme Regul 1999; 39:93–109. [Crossref]

  • 3.

    Nygård O, Vollset SE, Refsum H, Brattström L, Ueland PM. Total homocysteine and cardiovascular disease. J Intern Med 1999; 246:425–54.

  • 4.

    Clarke R, Smith AD, Jobst KA, Refsum H, Sutton L, Ueland PM. Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch Neurol 1998; 55:1449–55. [Crossref]

  • 5.

    Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D'Agostino RB, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. N Engl J Med 2002; 346:476–83.

  • 6.

    Vollset SE, Refsum H, Irgens LM, Emblem BM, Tverdal A, Gjessing HK, et al. Plasma total homocysteine, pregnancy complications, and adverse pregnancy outcomes: the Hordaland Homocysteine Study. Am J Clin Nutr 2000; 71:962–8.

  • 7.

    van Meurs JB, Dhonukshe-Rutten RA, Pluijm SM, van der Klift M, de Jonge R, Lindemans J, et al. Homocysteine levels and the risk of osteoporotic fracture. N Engl J Med 2004; 350:2033–41.

  • 8.

    McLean RR, Jacques PF, Selhub J, Tucker KL, Samelson EJ, Broe KE, et al. Homocysteine as a predictive factor for hip fracture in older persons. N Engl J Med 2004; 350:2042–9.

  • 9.

    Nygård O, Nordrehaug JE, Refsum H, Ueland PM, Farstad M, Vollset SE. Plasma homocysteine levels and mortality in patients with coronary artery disease. N Engl J Med 1997; 337:230–6.

  • 10.

    Taylor LM Jr, Moneta GL, Sexton GJ, Schuff RA, Porter JM. Prospective blinded study of the relationship between plasma homocysteine and progression of symptomatic peripheral arterial disease. J Vasc Surg 1999; 29:8–19. [Crossref]

  • 11.

    Bostom AG, Culleton BF. Hyperhomocysteinemia in chronic renal disease. J Am Soc Nephrol 1999; 10:891–900.

  • 12.

    Eichinger S, Stümpflen A, Hirschl M, Bialonczyk C, Herkner K, Stain M, et al. Hyperhomocysteinemia is a risk factor of recurrent venous thromboembolism. Thromb Haemost 1998; 80:566–9.

  • 13.

    Stehouwer CDA, Gall MA, Hougaard P, Jakobs C, Parving HH. Plasma homocysteine concentration predicts mortality in non-insulin-dependent diabetic patients with and without albuminuria. Kidney Int 1999; 55:308–14. [Crossref]

  • 14.

    Mudd SH, Levy HL, Kraus JP. Disorders of trans-sulfuration. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic and molecular basis of inherited disease, 8th ed. New York: McGraw-Hill, 2001:2007–56.

  • 15.

    Weiss N, Keller C, Hoffmann U, Loscalzo J. Endothelial dysfunction and atherothrombosis in mild hyperhomocysteinemia. Vasc Med 2002; 7:227–39. [Crossref]

  • 16.

    Weiss N, Heydrick SJ, Postea O, Keller C, Keaney JF Jr, Loscalzo J. Influence of hyperhomocysteinemia on the cellular redox state – impact on homocysteine-induced endothelial dysfunction. Clin Chem Lab Med 2003; 41:1455–61. [Crossref]

  • 17.

    Austin RC, Lentz SR, Werstuck GH. Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease. Cell Death Differ 2004; 11(Suppl 1):S56–64. [Crossref]

  • 18.

    Moat SJ, Lang D, McDowell IF, Clarke ZL, Madhavan AK, Lewis MJ, et al. Folate, homocysteine, endothelial function and cardiovascular disease. J Nutr Biochem 2004; 15:64–79. [Crossref]

  • 19.

    Weiss N. Mechanisms of increased vascular oxidant stress in hyperhomocysteinemia and its impact on endothelial function. Curr Drug Metab 2005; 6:27–36. [Crossref]

  • 20.

    Poddar R, Sivasubramanian N, DiBello PM, Robinson K, Jacobsen DW. Homocysteine induces expression and secretion of MCP-1 and IL-8 in human aortic endothelial cells: implications for vascular disease. Circulation 2001; 103:2717–23.

  • 21.

    Tsai J-C, Perrella MA, Yoshizumi M, Hsieh CM, Haber E, Schlegel R, et al. Promotion of vascular smooth muscle growth by homocysteine: a link to atherosclerosis. Proc Natl Acad Sci USA 1994; 91:6369–73. [Crossref]

  • 22.

    Lentz SR. Homocysteine and cardiovascular physiology. In: Carmel R, Jacobsen DW, editors. Homocysteine in health and disease. Cambridge, UK: Cambridge University Press, 2001:441–50.

  • 23.

    Zou C-G, Banerjee R. Homocysteine and redox signaling. Antioxid Redox Signal 2005; 7;547–59. [Crossref]

  • 24.

    Kang S-S, Wong PWK, Becker N. Protein-bound homocyst(e)ine in normal subjects and in patients with homocystinuria. Pediatr Res 1979; 13:1141–3. [Crossref]

  • 25.

    Malloy MH, Rassin DK, Gaull GE. Plasma cysteine in homocysteinemia. Am J Clin Nutr 1981; 34:2619–21.

  • 26.

    Smolin LA, Benevenga NJ. Accumulation of homocyst(e)ine in vitamin B6 deficiency: a model for the study of cystathionine B-synthase deficiency. J Nutr 1982; 112:1264–72.

  • 27.

    Refsum H, Helland S, Ueland PM. Radioenzymic determination of homocysteine in plasma and urine. Clin Chem 1985; 31:624–8.

  • 28.

    Kang S-S, Wong PWK, Cook HY, Norusis M, Messer JV. Protein-bound homocysteine: a possible risk factor for coronary artery disease. J Clin Invest 1986; 77:1482–6. [Crossref]

  • 29.

    Sartorio R, Carrozzo R, Corbo L, Andria G. Protein-bound plasma homocyst(e)ine and identification of heterozygotes for cystathionine-synthase deficiency. J Inherit Metab Dis 1986; 9:25–9. [Crossref]

  • 30.

    Wiley VC, Dudman NP, Wilcken DE. Interrelations between plasma free and protein-bound homocysteine and cysteine in homocystinuria. Metabolism 1988; 37:191–5. [Crossref]

  • 31.

    Wiley VC, Dudman NP, Wilcken DE. Free and protein-bound homocysteine and cysteine in cystathionine β-synthase deficiency: interrelations during short- and long-term changes in plasma concentrations. Metabolism 1989; 38:734–9. [Crossref]

  • 32.

    Smolin LA, Benevenga NJ. The use of cyst(e)ine in the removal of protein-bound homocysteine. Am J Clin Nutr 1984; 39:730–7.

  • 33.

    Wilcken DE, Wilcken B. The pathogenesis of coronary artery disease: a possible role for methionine metabolism. J Clin Invest 1976; 57:1079–82. [Crossref]

  • 34.

    Mansoor MA, Svardal AM, Ueland PM. Determination of the in vivo redox status of cysteine, cysteinylglycine, homocysteine, and glutathione in human plasma. Anal Biochem 1992; 200:218–29.

  • 35.

    Mansoor MA, Ueland PM, Aarsland A, Svardal AM. Redox status and protein binding of plasma homocysteine and other aminothiols in patients with homocystinuria. Metabolism 1993; 42:1481–5. [Crossref]

  • 36.

    Mansoor MA, Ueland PM, Svardal AM. Redox status and protein binding of plasma homocysteine and other aminothiols in patients with hyperhomocysteinemia due to cobalamin deficiency. Am J Clin Nutr 1994; 59:631–5.

  • 37.

    Mansoor MA, Bergmark C, Svardal AM, Lonning PE, Ueland PM. Redox status and protein binding of plasma homocysteine and other aminothiols in patients with early-onset peripheral vascular disease. Homocysteine and peripheral vascular disease. Arterioscler Thromb Vasc Biol 1995; 15:232–40. [Crossref]

  • 38.

    Refsum H, Smith AD, Ueland PM, Nexo E, Clarke R, McPartlin J, et al. Facts and recommendations about total homocysteine determinations: an expert opinion. Clin Chem 2004; 50:3–32. [Crossref]

  • 39.

    Jakubowski H. Molecular basis of homocysteine toxicity in humans. Cell Mol Life Sci 2004; 61:470–87. [Crossref]

  • 40.

    He XM, Carter DC. Atomic structure and chemistry of human serum albumin. Nature 1992; 358:209–15.

  • 41.

    Peters T Jr. All about albumin: biochemistry, genetics, and medical applications. San Diego, CA: Academic Press, 1996:51–4.

  • 42.

    Sengupta S, Chen H, Togawa T, DiBello PM, Majors AK, Büdy B, et al. Albumin thiolate anion is an intermediate in the formation of albumin-S-S-homocysteine. J Biol Chem 2001; 276:30111–7.

  • 43.

    Büdy B, Sengupta S, DiBello PM, Kinter M, Jacobsen DW. A facile synthesis of homocysteine-cysteine mixed disulfide. Anal Biochem 2001; 291:303–5.

  • 44.

    Sengupta S, Wehbe C, Majors AK, Ketterer ME, DiBello PM, Jacobsen DW. Relative roles of albumin and ceruloplasmin in the formation of homocysteine, homocysteine-cysteine mixed disulfide, and cystine in circulation. J Biol Chem 2001; 276:46896–904.

  • 45.

    Benson MD. Amyloidosis. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic and molecular bases of inherited disease, 8th ed. New York: McGraw-Hill, 2001:5345–78.

  • 46.

    Théberge R, Conners L, Skinner M, Costello CE. Characterization of transthyretin from serum using immunoprecipitation, HPLC/electrospray ionization and matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 1999; 71:452–9. [Crossref]

  • 47.

    Kishikawa M, Nakanishi T, Miyazaki A, Shimizu A. A simple and reliable method of detecting variant transthyretins by multidimensional liquid chromatography coupled to electrospray ionization mass spectrometry. Amyloid 1999; 6:48–53. [Crossref]

  • 48.

    Lim A, Sengupta S, McComb ME, Théberge R, Wilson WG, Costello CE, et al. In vitro and In vivo interactions of homocysteine with human plasma transthyretin. J Biol Chem 2003; 278:49707–13.

  • 49.

    Cornwell GG, Murdoch WL, Kyle RA, Westermark P, Pitkänen P. Frequency and distribution of senile cardiovascular amyloid. A clinicopathologic correlation. Am J Med 1983; 75:618–23. [Crossref]

  • 50.

    Undas A, Williams EB, Butenas S, Orfeo T, Mann KG. Homocysteine inhibits inactivation of Factor Va by activated protein C. J Biol Chem 2001; 276:4389–97.

  • 51.

    Lentz SR, Piegors DJ, Fernández JA, Erger RA, Arning E, Malinow MR. Effects of hyperhomocysteinemia on protein C activation and activity. Blood 2002; 100:2108–12. [Crossref]

  • 52.

    Wild SH, Fortmann SP, Marcovina SM. A prospective case-control study of lipoprotein(a) levels and apo(a) size and risk of coronary heart disease in Stanford Five-City Project participants. Arterioscler Thromb Vasc Biol 1997; 17:239–45. [Crossref]

  • 53.

    Herrmann W, Quast S, Ellgass A, Wolter K, Kiessig ST, Molinari E, et al. An increased serum level of free apo(a) in renal patients is more striking than that of Lp(a) and is influenced by homocysteine. Nephron 2000; 85:41–9. [Crossref]

  • 54.

    Foody JM, Milberg JA, Robinson K, Pearce GL, Jacobsen DW, Sprecher DL. Homocysteine and lipoprotein(a) interact to increase CAD risk in young men and women. Arterioscler Thromb Vasc Biol 2000; 20:493–9. [Crossref]

  • 55.

    Harpel PC, Chang VT, Borth W. Homocysteine and other sulfhydryl compounds enhance the binding of lipoprotein(a) to fibrin: a potential biochemical link between thrombosis, atherogenesis, and sulfhydryl compound metabolism. Proc Natl Acad Sci USA 1992; 89:10193–7. [Crossref]

  • 56.

    Majors AK, Sengupta S, Willard B, Kinter MT, Pyeritz RE, Jacobsen DW. Homocysteine binds to human plasma fibronectin and inhibits its interaction with fibrin. Arterioscler Thromb Vasc Biol 2002; 22:1354–9. [Crossref]

  • 57.

    Majors A, Ehrhart LA, Pezacka EH. Homocysteine as a risk factor for vascular disease – enhanced collagen production and accumulation by smooth muscle cells. Arterioscler Thromb Vasc Biol 1997; 17:2074–81. [Crossref]

  • 58.

    Majors AK, Sengupta S, Jacobsen DW, Pyeritz RE. Upregulation of smooth muscle cell collagen production by homocysteine-insight into the pathogenesis of homocystinuria. Mol Genet Metab 2002; 76:92–9. [Crossref]

  • 59.

    Zhou J, Moller J, Danielsen CC, Bentzon J, Ram HB, Austin RC, et al. Dietary supplement with methionine and homocysteine promotes early atherogenesis but not plaque rupture in apoE-deficient mice. Arterioscler Thromb Vasc Biol 2001; 21:1470–6. [Crossref]

  • 60.

    Lubec B, Labudova O, Hoeger H, Muehl A, Fang-Kircher S, Mark M, et al. Homocysteine increases cyclin-dependent kinase in aortic rat tissue. Circulation 1996; 94:2620–5. [Crossref]

  • 61.

    Burke AP, Fonseca V, Kolodgie F, Zieske A, Fink L, Virmani R. Increased serum homocysteine and sudden death resulting from coronary atherosclerosis with fibrous plaques. Arterioscler Thromb Vasc Biol 2002; 22:1936–41. [Crossref]

  • 62.

    McCully KS. Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol 1969; 56:111–28.

  • 63.

    Bescond A, Augier T, Chareyre C, Garçon D, Hornebeck W, Charpiot P. Influence of homocysteine on matrix metalloproteinase 2. Activation and activity. Biochem Biophys Res Commun 1999; 263:498–503.

  • 64.

    Murphy G, Docherty JP. The matrix metalloproteinases and their inhibitors. Am J Respir Cell Mol Biol 1992; 7:120–5. [Crossref]

  • 65.

    Hajjar KA, Jacovina AT. Modulation of annexin II by homocysteine: implications for atherothrombosis. J Investig Med 1998; 46:364–9.

  • 66.

    Hajjar KA, Harpel PC, Jaffe EA, Nachman RL. Binding of plasminogen to cultured human endothelial cells. J Biol Chem 1986; 261:11656–62.

  • 67.

    Hajjar KA, Mauri L, Jacovina AT, Zhong F, Mirza UA, Padovan JC, et al. Tissue plasminogen activator binding to the annexin II tail domain − direct modulation by homocysteine. J Biol Chem 1998; 273:9987–93.

  • 68.

    Weiss N, Heydrick S, Zhang Y-Y, Bierl C, Cap A, Loscalzo J. Cellular redox state and endothelial dysfunction in mildly hyperhomocysteinemic cystathionine β-synthase-deficient mice. Arterioscler Thromb Vas Biol 2002; 22;34–41. [Crossref]

  • 69.

    Huang R-FS, Hsu Y-C, Lin H-L, Yang FL. Folate depletion and elevated plasma homocysteine promote oxidative stress in rat livers. J Nutr 2001; 131:33–8.

  • 70.

    Weiss N, Zhang Y-Y, Heydrick S, Bierl C, Loscalzo J. Overexpression of cellular glutathione peroxidase rescues homocyst(e)ine-induced endothelial dysfunction. Proc Natl Acad Sci USA 2001; 98:12503–8. [Crossref]

  • 71.

    Nishio E, Watanabe Y. Homocysteine as a modulator of platelet-derived growth factor action in vascular smooth muscle cells: a possible role for hydrogen peroxide. Br J Pharmacol 1997; 122:269–74. [Crossref]

  • 72.

    Upchurch GR Jr, Welch GN, Fabian AJ, Freedman JE, Johnson JL, Keaney JF Jr, et al. Homocyst(e)ine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase. J Biol Chem 1997; 272:17012–7.

  • 73.

    Handy DE, Zhang Y, Loscalzo J. Homocysteine down-regulates cellular glutathione peroxidase (GPx1) by decreasing translation. J Biol Chem 2005; 280:15518–25.

  • 74.

    Böger RH, Bode-Böger SM, Sydow K, Heistad DD, Lentz SR. Plasma concentration of asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, is elevated in monkeys with hyperhomocyst(e)inemia or hypercholesterolemia. Arterioscler Thromb Vasc Biol 2000; 20:1557–64. [Crossref]

  • 75.

    Stühlinger MK, Tsao PS, Her J-H, Kimoto M, Balint RF, Cooke JP. Homocysteine impairs the nitric oxide synthase pathway role of asymmetric dimethylarginine. Circulation 2001; 104:2569–75. [Crossref]

  • 76.

    Lentz SR, Sadler JE. Inhibition of thrombomodulin surface expression and protein C activation by the thrombogenic agent homocysteine. J Clin Invest 1991; 88:1906–14. [Crossref]

  • 77.

    Hayashi T, Honda G, Suzuki K. An atherogenic stimulus homocysteine inhibits cofactor activity of thrombomodulin and enhances thrombomodulin expression in human umbilical vein endothelial cells. Blood 1992; 79:2930–6.

  • 78.

    Lentz SR, Sadler JE. Homocysteine inhibits von Willebrand factor processing and secretion by preventing transport from the endoplasmic reticulum. Blood 1993; 81:683–9.

  • 79.

    Kokame K, Kato H, Miyata T. Homocysteine-respondent genes in vascular endothelial cells identified by differential display analysis − GRP78/BiP and novel genes. J Biol Chem 1996; 271:29659–65.

  • 80.

    Outinen PA, Sood SK, Liaw PCY, Sarge KD, Maedna N, Hirsch J, et al. Characterization of the stress-inducing effects of homocysteine. Biochem J 1998; 332:213–21.

  • 81.

    Outinen PA, Sood SK, Pfeifer SI, Pamidi S, Podor TJ, Li J, et al. Homocysteine-induced endoplasmic reticulum stress and growth arrest leads to specific changes in gene expression in human vascular endothelial cells. Blood 1999; 94:959–67.

  • 82.

    Zhang C, Cai Y, Adachi MT, Oshiro S, Aso T, Kaufman RJ, et al. Homocysteine induces programmed cell death in human vascular endothelial cells through activation of the unfolded protein response. J Biol Chem 2001; 276:35867–74.

  • 83.

    Werstuck GH, Lentz SR, Dayal S, Hossain GS, Sood SK, Shi YY, et al. Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J Clin Invest 2001; 107:1263–73. [Crossref]

  • 84.

    Hossain GS, van Thienen JV, Werstuck G, Zhou J, Sood SK, Dickhout JG, et al. TDAGG51 is induced by homocysteine, promotes detachment-mediated programmed cell death and contributes to the development of atherosclerosis in hyperhomocysteinemia. J Biol Chem 2003; 278:30317–27.

About the article

Corresponding author: Donald W. Jacobsen, PhD, Department of Cell Biology, NC-10, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195, USA Phone: +1-216-444-8340, Fax: +1-216-445-5480,


Published Online: 2011-09-21

Published in Print: 2005-10-01


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/CCLM.2005.188. Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Kapil Deb Lahiri, Somnath Mukherjee, Sambuddha Ghosh, Suman Mukherjee, Jayanta Dutta, Himadri Datta, and Harendra Nath Das
Korean Journal of Ophthalmology, 2015, Volume 29, Number 2, Page 86
[2]
Mark R. Hellmich, Ciro Coletta, Celia Chao, and Csaba Szabo
Antioxidants & Redox Signaling, 2015, Volume 22, Number 5, Page 424
[3]
Kapil D. Lahiri, Himadri Datta, and Harendra N. Das
Indian Journal of Clinical Biochemistry, 2014, Volume 29, Number 1, Page 74
[4]
V.V. Ravi Kanth, Jaya Prakash Golla, B.K.S. Sastry, Sudhir Naik, Nitin Kabra, and Madireddi Sujatha
Journal of Cardiovascular Disease Research, 2011, Volume 2, Number 3, Page 156
[5]
Hieronim Jakubowski
Phosphorus, Sulfur, and Silicon and the Related Elements, 2013, Volume 188, Number 4, Page 384
[6]
Yumnam Silla, Elayanambi Sundaramoorthy, Puneet Talwar, and Shantanu Sengupta
Amino Acids, 2013, Volume 44, Number 5, Page 1307
[7]
Magdalena Arasimowicz-Jelonek, Jolanta Floryszak-Wieczorek, Jarosław Gzyl, and Jagna Chmielowska-Bąk
Plant Physiology and Biochemistry, 2013, Volume 63, Page 177
[8]
Asma Kassab and Agnieszka Piwowar
Biochimie, 2012, Volume 94, Number 9, Page 1837
[9]
Giovanna Cacciapuoti, Caterina Manna, Daniela Napoli, Vincenzo Zappia, and Marina Porcelli
FEBS Letters, 2007, Volume 581, Number 24, Page 4567
[11]
Prajitha Thampi, Bradford W. Stewart, Lija Joseph, Stepan B. Melnyk, Leah J. Hennings, and Shanmugam Nagarajan
Atherosclerosis, 2008, Volume 197, Number 2, Page 620
[12]
Mesia M. Steed and Suresh C. Tyagi
Antioxidants & Redox Signaling, 2011, Volume 15, Number 7, Page 1927
[13]
Catalina Carrasco-Pozo, Margarita E. Aliaga, Claudio Olea-Azar, and Hernán Speisky
Bioorganic & Medicinal Chemistry, 2008, Volume 16, Number 22, Page 9795
[14]
Anna Malinowska and Agata Chmurzynska
Nutrition Research, 2009, Volume 29, Number 10, Page 685
[16]
Arun K. Tewari, Alexandra Popova-Butler, Mohamed A. El-Mahdy, and Jay L. Zweier
PROTEOMICS, 2011, Volume 11, Number 10, Page 2051
[17]
John I. Toohey
Analytical Biochemistry, 2011, Volume 413, Number 1, Page 1
[18]
Sanjana Dayal and Steven R. Lentz
Antioxidants & Redox Signaling, 2007, Volume 9, Number 11, Page 1899
[19]
Hieronim Jakubowski
Clinical Chemical Laboratory Medicine, 2007, Volume 45, Number 12
[20]
Elayanambi Sundaramoorthy, Souvik Maiti, Samir K. Brahmachari, and Shantanu Sengupta
Proteins: Structure, Function, and Bioinformatics, 2007, Volume 71, Number 3, Page 1475
[21]
Li-Hong Qiu, Xian-Ji Xie, and Bi-Qi Zhang
Biological & Pharmaceutical Bulletin, 2010, Volume 33, Number 4, Page 641
[22]
Josephine Hidalgo-Tamola and Kanchan Chitaley
Journal of Sexual Medicine, 2009, Volume 6, Number 4, Page 916
[23]
Bram Bekaert, Matthew L. Cooper, Fiona R. Green, Helene McNulty, Kristina Pentieva, John M. Scott, Anne M. Molloy, and Margaret P. Rayman
Molecular Nutrition & Food Research, 2008, Volume 52, Number 11, Page 1324
[24]
Fan Yi and Pin-Lan Li
American Journal of Nephrology, 2008, Volume 28, Number 2, Page 254
[25]
J. Perła-Kaján, T. Twardowski, and H. Jakubowski
Amino Acids, 2007, Volume 32, Number 4, Page 561
[26]
D W Jacobsen
Kidney International, 2006, Volume 69, Number 5, Page 787

Comments (0)

Please log in or register to comment.
Log in