Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year

IMPACT FACTOR 2016: 3.432

CiteScore 2016: 2.21

SCImago Journal Rank (SJR) 2016: 1.000
Source Normalized Impact per Paper (SNIP) 2016: 1.112

See all formats and pricing
More options …
Volume 43, Issue 10 (Oct 2005)


Homocysteine – a newly recognised risk factor for osteoporosis

Markus Herrmann
  • Institut für Klinische Chemie und Laboratoriumsmedizin/Zentrallabor, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas Widmann / Wolfgang Herrmann
  • Institut für Klinische Chemie und Laboratoriumsmedizin/Zentrallabor, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-09-21 | DOI: https://doi.org/10.1515/CCLM.2005.194


Osteoporosis is a widespread problem, which frequently has devastating health consequences through its association with fragility fractures. The total number of fractures, and hence the cost to society, will increase dramatically over the next 50years as a result of demographic changes in the number of elderly people. Thus, prevention of osteoporosis by identifying risk factors or risk indicators, as well as the development of new treatment strategies, are major issues. Recent data suggest that homocysteine (Hcy), folate, vitamin B6 and vitamin B12 affect bone metabolism, bone quality and fracture risk in humans. Since circulating Hcy depends on folate, vitamin B6 and vitamin B12, Hcy could be suitable as a risk indicator for micronutrient-deficiency-related osteoporosis. Initial experimental results indicate that Hcy is not only a risk indicator, but also a player in bone metabolism. Moreover, existing data open speculation that folate, vitamin B6 and vitamin B12 act not only via Hcy-dependent pathways, but also via Hcy-independent pathways. However, more studies are needed to clarify the mechanistic role of Hcy, folate, vitamin B6 and vitamin B12 in bone metabolism.

Keywords: bone mineral density; bone turnover markers; homocysteine


  • 1.

    Walker-Bone K, Walter G, Cooper C. Recent developments in the epidemiology of osteoporosis. Curr Opin Rheumatol 2002; 14:411–5.CrossrefGoogle Scholar

  • 2.

    Melton LJ III. Adverse outcomes of osteoporotic fractures in the general population. J Bone Miner Res 2003; 18:1139–41.CrossrefGoogle Scholar

  • 3.

    Chrischilles E, Shireman T, Wallace R. Costs and health effects of osteoporotic fractures. Bone 1994; 15:377–86.CrossrefGoogle Scholar

  • 4.

    Kanis JA, Jonsson B. Economic evaluation of interventions for osteoporosis. Osteoporos Int 2002; 13:765–7.CrossrefGoogle Scholar

  • 5.

    McKusick VA. Heritable disorders of connective tissue. St. Louis: C.V. Mosby, 1966:155 pp.Google Scholar

  • 6.

    Kraus JP, Janosik M, Kozich V, Mandell R, Shih V, Sperandeo MP, et al. Cystathionine beta-synthase mutations in homocystinuria. Hum Mutat 1999; 13:362–75.CrossrefGoogle Scholar

  • 7.

    Schedewie H, Willich E, Grobe H, Schmidt H, Muller KM. Skeletal findings in homocystinuria: a collaborative study. Pediatr Radiol 1973; 1:12–23.CrossrefGoogle Scholar

  • 8.

    Brenton DP. Skeletal abnormalities in homocystinuria. Postgrad Med J 1977; 53:488–96.CrossrefGoogle Scholar

  • 9.

    Parrot F, Redonnet-Vernhet I, Lacombe D, Gin H. Osteoporosis in late-diagnosed adult homocystinuric patients. J Inherit Metab Dis 2000; 23:338–40.CrossrefGoogle Scholar

  • 10.

    Mudd SH, Skovby F, Levy HL, Pettigrew KD, Wilcken B, Pyeritz RE, et al. The natural history of homocystinuria due to cystathionine beta-synthase deficiency. Am J Hum Genet 1985; 37:1–31.Google Scholar

  • 11.

    Lees S, Eyre DR, Barnard SM. BAPN dose dependence of mature crosslinking in bone matrix collagen of rabbit compact bone: corresponding variation of sonic velocity and equatorial diffraction spacing. Connect Tissue Res 1990; 24:95–105.CrossrefGoogle Scholar

  • 12.

    Lubec B, Fang-Kircher S, Lubec T, Blom HJ, Boers GH. Evidence for McKusick's hypothesis of deficient collagen cross-linking in patients with homocystinuria. Biochim Biophys Acta 1996; 1315:159–62.Google Scholar

  • 13.

    van Meurs JB, Dhonukshe-Rutten RA, Pluijm SM, van der Klift M, de Jonge R, Lindemans J, et al. Homocysteine levels and the risk of osteoporotic fracture. N Engl J Med 2004; 350:2033–41.Google Scholar

  • 14.

    McLean RR, Jacques PF, Selhub J, Tucker KL, Samelson EJ, Broe KE, et al. Homocysteine as a predictive factor for hip fracture in older persons. N Engl J Med 2004; 350:2042–9.Google Scholar

  • 15.

    Sato Y, Honda Y, Iwamoto J, Kanoko T, Satoh K. Effect of folate and mecobalamin on hip fractures in patients with stroke: a randomized controlled trial. J Am Med Assoc 2005; 293:1082–8.Google Scholar

  • 16.

    Herrmann M, Kraenzlin M, Pape G, Sand-Hill M, Herrmann W. Relation between homocysteine and biochemical bone turnover markers and bone mineral density in peri- and postmenopausal women. Clin Chem Lab Med 2005; 43:1118–23.CrossrefGoogle Scholar

  • 17.

    Cagnacci A, Baldassari F, Rivolta G, Arangino S, Volpe A. Relation of homocysteine, folate, and vitamin B12 to bone mineral density of postmenopausal women. Bone 2003; 33:956–9.CrossrefGoogle Scholar

  • 18.

    Golbahar J, Hamidi A, Aminzadeh MA, Omrani GR. Association of plasma folate, plasma total homocysteine, but not methylenetetrahydrofolate reductase C667T polymorphism, with bone mineral density in postmenopausal Iranian women: a cross-sectional study. Bone 2004; 35:760–5.CrossrefGoogle Scholar

  • 19.

    Miyao M, Morita H, Hosoi T, Kurihara H, Inoue S, Hoshino S, et al. Association of methylenetetrahydrofolate reductase (MTHFR) polymorphism with bone mineral density in postmenopausal Japanese women. Calcif Tissue Int 2000; 66:190–4.CrossrefGoogle Scholar

  • 20.

    Bode MK, Laitinen P, Risteli J, Uusimaa P, Juvonen T. Atherosclerosis, type 1 collagen cross-linking and homocysteine. Atherosclerosis 2000; 152:531–2.Google Scholar

  • 21.

    Masse PG, Boskey AL, Ziv I, Hauschka P, Donovan SM, Howell DS, et al. Chemical and biomechanical characterization of hyperhomocysteinemic bone disease in an animal model. BMC Musculoskelet Disord 2003; 4:2.CrossrefGoogle Scholar

  • 22.

    Herrmann M, Widmann T, Colaianni G, Colucci S, Zallone A, Herrmann W. Increased osteoclast activity in the presence of elevated homocysteine levels. Clin Chem 2005. In press.CrossrefGoogle Scholar

  • 23.

    Itzstein C, Cheynel H, Burt-Pichat B, Merle B, Espinosa L, Delmas PD, et al. Molecular identification of NMDA glutamate receptors expressed in bone cells. J Cell Biochem 2001; 82:134–44.CrossrefGoogle Scholar

  • 24.

    Merle B, Itzstein C, Delmas PD, Chenu C. NMDA glutamate receptors are expressed by osteoclast precursors and involved in the regulation of osteoclastogenesis. J Cell Biochem 2003; 90:424–36.CrossrefGoogle Scholar

  • 25.

    Espinosa L, Itzstein C, Cheynel H, Delmas PD, Chenu C. Active NMDA glutamate receptors are expressed by mammalian osteoclasts. J Physiol 1999; 518:47–53.Google Scholar

  • 26.

    Itzstein C, Espinosa L, Delmas PD, Chenu C. Specific antagonists of NMDA receptors prevent osteoclast sealing zone formation required for bone resorption. Biochem Biophys Res Commun 2000; 268:201–9.Google Scholar

  • 27.

    Chenu C, Serre CM, Raynal C, Burt-Pichat B, Delmas PD. Glutamate receptors are expressed by bone cells and are involved in bone resorption. Bone 1998; 22:295–9.CrossrefGoogle Scholar

  • 28.

    Brown AT, Chen H, Zhang X, Moursi MM. Homocysteine induces NADPH oxidase expression in rat vascular smooth muscle cells: role of NMDA receptor and PKC-epsilon. Clin Chem Lab Med 2005; 43:A27.Google Scholar

  • 29.

    Goerss JB, Kim CH, Atkinson EJ, Eastell R, O'Fallon WM, Melton LJ, III. Risk of fractures in patients with pernicious anemia. J Bone Miner Res 1992; 7:573–9.CrossrefGoogle Scholar

  • 30.

    Reynolds TM, Marshall PD, Brain AM. Hip fracture patients may be vitamin B6 deficient. Controlled study of serum pyridoxal-5'-phosphate. Acta Orthop Scand 1992; 63:635–8.Google Scholar

  • 31.

    Melhus H, Michaelsson K, Holmberg L, Wolk A, Ljunghall S. Smoking, antioxidant vitamins, and the risk of hip fracture. J Bone Miner Res 1999; 14:129–35.CrossrefGoogle Scholar

  • 32.

    Lumbers M, New SA, Gibson S, Murphy MC. Nutritional status in elderly female hip fracture patients: comparison with an age-matched home living group attending day centres. Br J Nutr 2001; 85:733–40.CrossrefGoogle Scholar

  • 33.

    Stanger O, Herrmann W, Pietrzik K, Fowler B, Geisel J, Dierkes J, et al. DACH-LIGA Homocystein (German, Austrian and Swiss Homocysteine Society): consensus paper on the rational clinical use of homocysteine, folic acid and B-vitamins in cardiovascular and thrombotic diseases: guidelines and recommendations. Clin Chem Lab Med 2003; 41:1392–403.Google Scholar

  • 34.

    Bathum L, von Bornemann HJ, Christiansen L, Madsen JS, Skytthe A, Christensen K. Evidence for an association of methylene tetrahydrofolate reductase polymorphism C677T and an increased risk of fractures: results from a population-based Danish twin study. Osteoporos Int 2004; 15:659–64.CrossrefGoogle Scholar

  • 35.

    Abrahamsen B, Madsen JS, Tofteng CL, Stilgren L, Blad-bjerg EM, Kristensen SR, et al. A common methylene-tetra hydrofolate reductase (C677T) polymorphism is associated with low bone mineral density and increased fracture incidence after menopause: longitudinal data from the Danish osteoporosis prevention study. J Bone Miner Res 2003; 18:723–9.CrossrefGoogle Scholar

  • 36.

    Villadsen MM, Bunger MH, Carstens M, Stenkjaer L, Langdahl BL. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism is associated with osteoporotic vertebral fractures, but is a weak predictor of BMD. Osteoporos Int 2005; 16:411–6.CrossrefGoogle Scholar

  • 37.

    Jorgensen HL, Madsen JS, Madsen B, Saleh MM, Abrahamsen B, Fenger M, et al. Association of a commonallelic polymorphism (C677T) in the methylene tetrahydrofolate reductase gene with a reduced risk of osteoporotic fractures. A case control study in Danish postmenopausal women. Calcif Tissue Int 2002; 71:386–92.Google Scholar

  • 38.

    Dhonukshe-Rutten RA, Lips M, de JN, Chin APM, Hiddink GJ, Van DM, et al. Vitamin B-12 status is associated with bone mineral content and bone mineral density in frail elderly women but not in men. J Nutr 2003; 133:801–7.Google Scholar

  • 39.

    Dhonukshe-Rutten RA, Van Dusseldorp M, Schneede J, de Groot LC, van Staveren WA. Low bone mineral density and bone mineral content are associated with low cobalamin status in adolescents. Eur J Nutr2004; August.Google Scholar

  • 40.

    Tucker KL, Hannan MT, Qiao N, Jacques PF, Selhub J, Cupples LA, et al. Low plasma vitamin B(12) is associated with lower BMD: The Framingham Osteoporosis Study. J Bone Miner Res 2005; 20:152–8.CrossrefGoogle Scholar

  • 41.

    Stone KL, Bauer DC, Sellmeyer D, Cummings SR. Low serum vitamin B-12 levels are associated with increased hip bone loss in older women: a prospective study. J Clin Endocrinol Metab 2004; 89:1217–21.CrossrefGoogle Scholar

  • 42.

    Cagnacci A, Baldassari F, Rivolta G, Arangino S, Volpe A. Relation of homocysteine, folate, and vitamin B12 to bone mineral density of postmenopausal women. Bone 2003; 33:956–9.Google Scholar

  • 43.

    Li M, Lau EM, Woo J. Methylenetetrahydrofolate reductase polymorphism (MTHFR C677T) and bone mineral density in Chinese men and women. Bone 2004; 35:1369–74.CrossrefGoogle Scholar

  • 44.

    Macdonald HM, McGuigan FE, Fraser WD, New SA, Ralston SH, Reid DM. Methylenetetrahydrofolate reductase polymorphism interacts with riboflavin intake to influence bone mineral density. Bone 2004; 35:957–64.CrossrefGoogle Scholar

  • 45.

    Abrahamsen B, Madsen JS, Tofteng CL, Stilgren L, Bladbjerg EM, Kristensen SR, et al. Are effects of MTHFR (C677T) genotype on BMD confined to women with low folate and riboflavin intake? Analysis of food records from the Danish osteoporosis prevention study. Bone 2005; 36:577–83.CrossrefGoogle Scholar

  • 46.

    McLean RR, Karasik D, Selhub J, Tucker KL, Ordovas JM, Russo GT, et al. Association of a common polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene with bone phenotypes depends on plasma folate status. J Bone Miner Res 2004; 19:410–8.CrossrefGoogle Scholar

  • 47.

    Carmel R, Lau KH, Baylink DJ, Saxena S, Singer FR. Cobalamin and osteoblast-specific proteins. N Engl J Med 1988; 319:70–5.Google Scholar

  • 48.

    Kim GS, Kim CH, Park JY, Lee KU, Park CS. Effects of vitamin B12 on cell proliferation and cellular alkaline phosphatase activity in human bone marrow stromal osteoprogenitor cells and UMR106 osteoblastic cells. Metabolism 1996; 45:1443–6.Google Scholar

  • 49.

    Melton ME, Kochman ML. Reversal of severe osteo-porosis with vitamin B12 and etidronate therapy in apatient with pernicious anemia. Metabolism 1994; 43:468–9.Google Scholar

  • 50.

    Dodds RA, Catterall A, Bitensky L, Chayen J. Abnormalities in fracture healing induced by vitamin B6-deficiency in rats. Bone 1986; 7:489–95.CrossrefGoogle Scholar

  • 51.

    Maggio D, Barabani M, Pierandrei M, Polidori MC, Catani M, Mecocci P, et al. Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study. J Clin Endocrinol Metab 2003; 88:1523–7.CrossrefGoogle Scholar

  • 52.

    Basu S, Michaelsson K, Olofsson H, Johansson S, Melhus H. Association between oxidative stress and bone mineral density. Biochem Biophys Res Commun 2001; 288:275–9.CrossrefGoogle Scholar

  • 53.

    Morton DJ, Barrett-Connor EL, Schneider DL. Vitamin C supplement use and bone mineral density in postmenopausal women. J Bone Miner Res 2001; 16:135–40.CrossrefGoogle Scholar

  • 54.

    Bai XC, Lu D, Bai J, Zheng H, Ke ZY, Li XM, et al. Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem Biophys Res Commun 2004; 314:197–207.Google Scholar

  • 55.

    Garrett IR, Boyce BF, Oreffo RO, Bonewald L, Poser J, Mundy GR. Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro andin vivo. J Clin Invest 1990; 85:632–9.CrossrefGoogle Scholar

  • 56.

    Mody N, Parhami F, Sarafian TA, Demer LL. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med 2001; 31:509–19.Google Scholar

  • 57.

    Masse PG, Rimnac CM, Yamauchi M, Coburn SP, Rucker RB, Howell DS, et al. Pyridoxine deficiency affects biomechanical properties of chick tibial bone. Bone 1996; 18:567–74.CrossrefGoogle Scholar

About the article

Corresponding author: Dr. med. Markus Herrmann, Institut für Klinische Chemie und Laboratoriumsmedizin/Zentrallabor, Universitätsklinikum des Saarlandes, 66421 Homburg/Saar, Germany Phone: +49-6841-163-0707, Fax: +49-6841-163-0703,

Published Online: 2011-09-21

Published in Print: 2005-10-01

Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/CCLM.2005.194.

Export Citation

©2005 by Walter de Gruyter Berlin New York. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Tomas Majtan, Insun Park, Erez M. Bublil, and Jan P. Kraus
Human Mutation, 2017
Juan Ni, Ling Zhang, Tao Zhou, Wei-Jiang Xu, Jing-Lun Xue, Neng Cao, and Xu Wang
Journal of the Chinese Medical Association, 2017, Volume 80, Number 3, Page 147
Colin R. Lenihan, Sumi Sukumaran Nair, Chandan Vangala, Venkat Ramanathan, Maria E. Montez-Rath, and Wolfgang C. Winkelmayer
American Journal of Kidney Diseases, 2017, Volume 69, Number 5, Page 595
Joana Rosa, Daniel M. Tiago, Cátia L. Marques, Parameswaran Vijayakumar, Luis Fonseca, M. Leonor Cancela, and Vincent Laizé
Biochimica et Biophysica Acta (BBA) - General Subjects, 2016, Volume 1860, Number 7, Page 1373
Valentina Fratoni and Maria Brandi
Nutrients, 2015, Volume 7, Number 4, Page 2176
Irena Keser, Jasminka Z. Ilich, Nada Vrkić, Zlatko Giljević, and Irena Colić Barić
Nutrition Research, 2013, Volume 33, Number 3, Page 211
Abdellah El Maghraoui, Imad Ghozlani, Aziza Mounach, Asmaa Rezqi, Khalid Oumghar, Lahsen Achemlal, Ahmed Bezza, and Zhor Ouzzif
Journal of Clinical Densitometry, 2012, Volume 15, Number 3, Page 328
Martijn J. de Groot, Marieke Hoeksma, Margreet van Rijn, Riemer H.J.A. Slart, and Francjan J. van Spronsen
Molecular Genetics and Metabolism, 2012, Volume 105, Number 4, Page 566
Zhor Ouzzif, Khalid Oumghar, Karim Sbai, Aziza Mounach, El Mustapha Derouiche, and Abdellah El Maghraoui
Rheumatology International, 2012, Volume 32, Number 1, Page 123
W.K. Kim, K. Ke, O.J. Sul, H.J. Kim, S.H. Kim, M.H. Lee, H.J. Kim, S.Y. Kim, H.T. Chung, and H.S. Choi
Journal of Cellular Biochemistry, 2011, Volume 112, Number 11, Page 3159
Robin A. Alley, Emery L. Chen, Todd D. Beyer, and Richard A. Prinz
The American Journal of Surgery, 2008, Volume 195, Number 3, Page 374
Roman Thaler, Silvia Spitzer, Monika Rumpler, Nadja Fratzl-Zelman, Klaus Klaushofer, Eleftherios P. Paschalis, and Franz Varga
Bone, 2010, Volume 46, Number 3, Page 703
Neetu Tyagi, Madhavi Kandel, Charu Munjal, Natia Qipshidze, Jonathan C. Vacek, Sathnur B. Pushpakumar, Naria Metreveli, and Suresh C. Tyagi
Journal of Orthopaedic Research, 2011, Volume 29, Number 10, Page 1511
M. Baines, M.-B. Kredan, J. Usher, A. Davison, G. Higgins, W. Taylor, C. West, W.D. Fraser, and L.R. Ranganath
Bone, 2007, Volume 40, Number 3, Page 730
Markus Herrmann, Johannes Schmidt, Natascha Umanskaya, Graziana Colaianni, Fuad Al Marrawi, Thomas Widmann, Alberta Zallone, Britt Wildemann, and Wolfgang Herrmann
Bone, 2007, Volume 41, Number 4, Page 584
Pauline M. Camacho and Norma A. Lopez
Clinical Chemistry and Laboratory Medicine, 2008, Volume 46, Number 10
Markus Herrmann, Natalia Umanskaya, Lydia Traber, Heinrich Schmidt-Gayk, Wolfgang Menke, Gerd Lanzer, Markus Lenhart, Johannes Peter Schmidt, and Wolfgang Herrmann
Clinical Chemical Laboratory Medicine, 2007, Volume 45, Number 12
Pooneh Salari, Bagher Larijani, and Mohammad Abdollahi
Therapy, 2008, Volume 5, Number 2, Page 215
Young Sun Chung, Seung Ho Hong, Kyung Tae Min, Dong Eun Shin, Jae Ho Lee, Yu Shik Shim, Jung Yong Ahn, and Nam Keun Kim
Genes & Genomics, 2010, Volume 32, Number 6, Page 499
Zora Krivošíková, Marica Krajčovičová-Kudláčková, Viera Spustová, Kornélia Štefíková, Martina Valachovičová, Pavel Blažíček, and Tatiana Nĕmcová
European Journal of Nutrition, 2010, Volume 49, Number 3, Page 147
Necat Yilmaz, Esin Eren, and Sadik Özmen
Medicina Sportiva, 2008, Volume 12, Number 3, Page 61
Nuray Bozkurt, Mehmet Erdem, Ercan Yılmaz, Ahmet Erdem, Aydan Biri, Ayca Kubatova, and Murat Bozkurt
Archives of Gynecology and Obstetrics, 2009, Volume 280, Number 3, Page 381
Chris J. Hendriksz
Pediatric Radiology, 2009, Volume 39, Number 3, Page 211
Ilhan Bayhan, Dilek Uygur, Nil Ugurlu, and Gulnur Ozaksit
Rheumatology International, 2009, Volume 29, Number 3, Page 263
Sohyun Park and Mary Ann Johnson
Nutrition Reviews, 2006, Volume 64, Number 8, Page 373
C. Turecek, N. Fratzl-Zelman, M. Rumpler, B. Buchinger, S. Spitzer, R. Zoehrer, E. Durchschlag, K. Klaushofer, E. P. Paschalis, and F. Varga
Calcified Tissue International, 2008, Volume 82, Number 5, Page 392
M. Baines, M.-B. Kredan, A. Davison, G. Higgins, C. West, W. D. Fraser, and L. R. Ranganath
Calcified Tissue International, 2007, Volume 81, Number 6, Page 450

Comments (0)

Please log in or register to comment.
Log in