Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year

IMPACT FACTOR 2016: 3.432

CiteScore 2016: 2.21

SCImago Journal Rank (SJR) 2016: 1.000
Source Normalized Impact per Paper (SNIP) 2016: 1.112

See all formats and pricing
More options …
Volume 43, Issue 11 (Nov 2005)


Cervical human papillomavirus screening by PCR: advantages of targeting the E6/E7 region

Brian J. Morris
  • Basic & Clinical Genomics Laboratory, School of Medical Sciences and Institute for Biomedical Research, The University of Sydney, Sydney, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2005-10-19 | DOI: https://doi.org/10.1515/CCLM.2005.203


PCR is a promising method for detection of human papillomavirus (HPV), the high-risk forms of which are responsible for cervical cancer. PCR primers that target the L1 or E1 region can be unreliable and may miss more advanced disease, whereas those directed at the E6 or E7 regions, which encode oncogenic products, are preferable because 1) the LI/E1 regions, but never the E6/E7 regions, are lost during integration of viral DNA into host genomic DNA, a process that can represent an integral component of progression from infection to tumorigenesis; and 2) the E6/E7 nucleotide sequence exhibits less nucleotide variation. The choice of region used for PCR has implications for HPV screening strategies in the clinical diagnosis and management of cervical cancer.

Keywords: cervical cancer; cervical dysplasia; cervical intrepithelial neoplasia (CIN); diagnostic testing; oncogenes; open reading frames E6, E7, E1, E2 and L1; papillomavirus, human; PCR; viral integration


  • 1.

    Walboomers JM, Jacobs MV, Manos MM, Bosch F, Kummer JA, Shah KV, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 1999; 189:12–9.CrossrefGoogle Scholar

  • 2.

    Bosch FX, Manos MM, Munoz M, Sherman M, Jansen AM, Peto J, et al. Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. J Natl Cancer Inst 1995; 87:796–802.CrossrefGoogle Scholar

  • 3.

    Turek LP. The structure, function, and regulation of papillomaviral genes in infection and cervical cancer. Adv Virus Res 1994; 44:305–56.CrossrefGoogle Scholar

  • 4.

    Dowhanick JJ, McBride AA, Lowly PM. Suppression of cellular proliferation by the papillomavirus E2 protein. J Virol 1995; 69:7791–9.Google Scholar

  • 5.

    Kobayashi Y, Yoshinouchi M, Tianqi G, Nakamura K, Hongo A, Kamimura S, et al. Presence of human papillomavirus DNA in pelvic lymph nodes can predict unexpected recurrence of cervical cancer in patients with histologically negative lymph nodes. Clin Cancer Res 1998; 4:979–83.Google Scholar

  • 6.

    Cullen AP, Reid R, Campion M, Lorincz A. Analysis of the physical state of different human papillomavirus DNAs in intraepithelial and invasive cervical neoplasms. J Virol 1991; 65:606–12.Google Scholar

  • 7.

    Das BC, Sharma JK, Gopalakrishna V, Luthra UK. Analysis by polymerase chain reaction of the physical state of human papillomavirus type 16 DNA in cervical preneoplastic and neoplastic lesions. J Gen Virol 1992; 73:2327–36.CrossrefGoogle Scholar

  • 8.

    Boshart M, Gissmann L, Ikenberg H, Kleinheinz A, Scheurlen W, zur Hausen H. A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer. EMBO J 1984; 3:1151–7.Google Scholar

  • 9.

    Howley PM. Presence and expression of human papillomavirus sequences in human cervical carcinoma cell lines. Am J Pathol 1985; 119:361–6.Google Scholar

  • 10.

    Yee C, Krishnan-Hewlett I, Backer CC, Schlegal R, Howley PM. Presence and expression of human papillomavirus sequences in human cervical carcinoma cell lines. Am J Pathol 1985; 119:361–6.Google Scholar

  • 11.

    Tsunokawa Y, Takebe N, Nozawa S, Kasamatsu T, Gissmann L, zur Hausen H, et al. Presence of human papillomavirus type-16 and type-18 DNA sequences and their expression in cervical cancers and cell lines from Japanese patients. Int J Cancer 1986; 37:499–503.CrossrefGoogle Scholar

  • 12.

    Vernon DD, Unger ER, Miller DL, Lee DR, Reeves WC. Association of human papillomavirus type 16 integration in the E2 gene with poor disease-free survival from cervical cancer. Int J Cancer 1997; 74:50–6.Google Scholar

  • 13.

    Dürst M, Kleinheinz A, Hotz M, Gissman L. The physical state of human papillomavirus type 16 DNA in benign and malignant genital tumours. J Gen Virol 1985; 66:1515–22.CrossrefGoogle Scholar

  • 14.

    Yiu KC, Huang DP, Chan MK, Foo W. The physical state of human papillomavirus type 16 DNA in cervical carcinomas of Hong Kong Chinese. Oncogene 1991; 6:1339–42.Google Scholar

  • 15.

    Matsukura T, Koi S, Sugase M. Both episomal and integrated forms of human papillomavirus type 16 are involved in invasive cervical cancers. Virology 1989; 172:63–72.CrossrefGoogle Scholar

  • 16.

    Watts KJ, Thompson CH, Cossart YE, Rose BR. Sequence variation and physical state of human papillomavirus type 16 cervical cancer isolates from Australia and New Caledonia. Int J Cancer 2002; 97:868–74.CrossrefGoogle Scholar

  • 17.

    Peitsaro P, Johansson B, Syrjanen S. Integrated human papillomavirus type 16 is frequently found in cervical cancer precursors as demonstrated by a novel quantitative real-time PCR technique. J Clin Microbiol 2002; 40:886–91.CrossrefGoogle Scholar

  • 18.

    Schwarz E, Freese U, Gissmann L, Mayer W, Roggenbuck B, Stremlau A, et al. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 1985; 314:111–14.CrossrefGoogle Scholar

  • 19.

    Fukushima M, Yamakawa Y, Shimano S, Hashimoto M, Sawada Y, Fujinaga K. The physical state of human papillomavirus 16 DNA in cervical carcinoma and cervical intraepithelial neoplasia. Cancer 1990; 66:2155–61.CrossrefGoogle Scholar

  • 20.

    Park JS, Hwang ES, Park SN, Ahn HK, Um SJ, Kim CJ, et al. Physical status and expression of HPV genes in cervical cancers. Gynecol Oncol 1997; 65:121–9.CrossrefGoogle Scholar

  • 21.

    Pfister H, Fuchs PG. Relation of papillomaviruses to anogenital cancer. Dermatol Clin 1991; 9:267–76.Google Scholar

  • 22.

    Shirasawa H, Tomita Y, Kubota K, Kasai T, Sekiya S, Takamizawa H, et al. Detection of human papillomavirus type 16 DNA and evidence for integration into the cell DNA in cervical dysplasia. J Gen Virol 1986; 67:2011–5.CrossrefGoogle Scholar

  • 23.

    Andersson S, Safari H, Mints M, Lewensohn-Fuchs I, Gyllensten U, Johansson B. Type distribution, viral load and integration status of high-risk human papillomaviruses in pre-stages of cervical cancer (CIN). Br J Cancer 2005; 92:2195–200.CrossrefGoogle Scholar

  • 24.

    Shirasawa H, Tomita Y, Sekiya S, Takamizawa H, Simizu B. Integration and transcription of human papillomavirus type 16 and 18 sequences in cell lines derived from cervical carcinomas. J Gen Virol 1987; 68:583–91.CrossrefGoogle Scholar

  • 25.

    Choo KV, Pan CC, Han SH. Integration of human papillomavirus type 16 into cellular DNA of cervical carcinoma: preferential deletion of the E2 gene and invariable retention of the long control region and the E6/E7 open reading frames. Virology 1987; 161:259–61.Google Scholar

  • 26.

    Matsukura T, Kanda T, Furuno A, Yoshikawa H, Kawana T, Yoshiike K. Cloning of monomeric human papillomavirus type 16 DNA integrated within cell DNA from a cervical carcinoma. J Virol 1986; 58:979–82.Google Scholar

  • 27.

    Schneider-Maunoury S, Croissant O, Orth G. Integration of human papillomavirus type 16 DNA sequences: a possible early event in the progression of genital tumours. J Virol 1987; 61:3295–8.Google Scholar

  • 28.

    Wagatsuma M, Hashimoto K, Matsukura T. Analysis of integrated human papillomavirus type 16 DNA in cervical cancers: amplification of viral sequences together with cellular flanking sequences. J Virol 1990; 64:813–21.Google Scholar

  • 29.

    Jeon S, Allen-Hoffmann BL, Lambert PF. Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. J Virol 1995; 69:2989–97.Google Scholar

  • 30.

    Cone RW, Minson AC, Smith MR, McDougall JK. Conservation of HPV-16 E6/E7 ORF sequences in a cervical carcinoma. J Med Virol 1992; 37:99–107.CrossrefGoogle Scholar

  • 31.

    Baker CC, Phelps WC, Lindgren V, Braun MJ, Gonda MA, Howley PM. Structural and transcriptional analysis of human papillomavirus type 16 sequences in cervical carcinoma cell lines. J Virol 1987; 61:962–71.Google Scholar

  • 32.

    Choo KB, Lee HH, Pan CC, Wu SM, Liew LN, Cheung WF, et al. Sequence duplication and internal deletion in the integrated human papillomavirus type 16 genome cloned from a cervical carcinoma. J Virol 1988; 62:1659–66.Google Scholar

  • 33.

    Jeon S, Lambert PF. Integration of human papillomavirus type 16 DNA into the human genome leads to increased stability of E6 and E7 mRNAs: implications for cervical carcinogenesis. Proc Natl Acad Sci USA 1995; 92:1654–8.Google Scholar

  • 34.

    Romanczuk H, Thierry F, Howley PM. Mutational analysis of cis elements involved in E2 modulation of human papillomavirus type 16 P99 and type 18 P105 promoters. J Virol 1990; 64:5240–9.Google Scholar

  • 35.

    Thierry F, Howley PM. Functional analysis of E2 mediated repression of the HPV 18 P105 promoter. New Biol 1991; 3:90–100.Google Scholar

  • 36.

    Bernard BA, Bailly C, Lenoir MC, Darmon M, Thierry F, Yaniv M. The human papillomavirus type 18 (HPV18) E2 gene product is a repressor of the HPV 18 regulatory region in human keratinocytes. J Virol 1989; 63:4317–24.Google Scholar

  • 37.

    Karlsen F, Kalantari M, Jenkins A, Pettersen E, Kristensen G, Holm R, et al. Use of multiple PCR primer sets for optimal detection of human papillomavirus. J Clin Microbiol 1996; 34:2095–100.Google Scholar

  • 38.

    Manos MM, Ting Y, Wright DK, Lewis AJ, Broker TR, Wolinsky SM. The use of polymerase chain reaction amplification for the detection of genital human papillomaviruses. Cancer Cells 1989; 7:209–14.Google Scholar

  • 39.

    de Roda Husman AM, Walboomers JM, van den Brule AJ, Meijer CJ, Snijders PJ. The use of general primers GP5 and GP6 elongated at their 3′ ends with adjacent highly conserved sequences improves human papillomavirus detection by PCR. J Gen Virol 1995; 76:1057–62.CrossrefGoogle Scholar

  • 40.

    Snijders PJ, van den Brule AJ, Schrijnemakers HF, Snow G, Meijer CJ, Walboomers JM. The use of general primers in the polymerase chain reaction permits the detection of a broad spectrum of human papillomavirus genotypes. J Gen Virol 1990; 71:173–81.CrossrefGoogle Scholar

  • 41.

    Hildesheim A, Schiffman MH, Gravitt PE, Glass AG, Greer CE, Zhang T, et al. Persistence of type-specific human papillomavirus infection among cytologically normal women. J Inf Dis 1994; 169:235–40.CrossrefGoogle Scholar

  • 42.

    Gravitt PE, Peyton CL, Alessi TQ, Wheeler CM, Coutlee F, Hildesheim A, et al. Improved amplification of genital human papillomaviruses. J Clin Microbiol 2000; 38:357–61.Google Scholar

  • 43.

    Qu W, Jiang G, Cruz Y, Chang CJ, Ho GY, Klein RS, et al. PCR detection of human papillomavirus: comparison between MY09/MY11 and GP5+/GP6+ primer systems. J Clin Microbiol 1997; 35:1304–10.Google Scholar

  • 44.

    Coutlée F, Gravitt P, Kornegay J, Hankins C, Richardson H, Lapointe N, et al. Use of PGMY primers in L1 consensus PCR improves detection of human papillomavirus DNA in genital samples. J Clin Microbiol 2002; 40:902–7.CrossrefGoogle Scholar

  • 45.

    Kleter B, van Doorn LJ, ter Schegget J, Schrauwen L, van Krimpen K, Burger M, et al. Novel short-fragment PCR assay for highly sensitive broad-spectrum detection of anogenital human papillomaviruses. Am J Pathol 1998; 153:1731–9.CrossrefGoogle Scholar

  • 46.

    Perrons C, Kleter B, Jelley R, Jalal H, Quint W, Tedder R. Detection and genotyping of human papillomavirus DNA by SPF10 and MY09/11 primers in cervical cells taken from women attending a colposcopy clinic. J Med Virol 2002; 67:246–52.CrossrefGoogle Scholar

  • 47.

    Monsonego J, Bohbot JM, Pollini G, Krawec C, Vincent C, Merignargues I, et al. Performance of the Roche AMPLICOR® Human papillomavirus (HPV) test in prediction of cervical intraepithelial neoplasia (CIN) in women with abnormal PAP smear. Gynecol Oncol 2005; July.CrossrefGoogle Scholar

  • 48.

    Gregoire L, Arella M, Campione-Piccardo J, Lancaster WD. Amplification of human papillomavirus DNA sequences by using conserved primers. J Clin Microbiol 1989; 27:2660–5.Google Scholar

  • 49.

    Morris BJ, Flanagan JL, McKinnon KJ, Nightingale BN. Papillomavirus screening of cervical lavages by polymerase chain reaction. Lancet 1988; ii:1368.CrossrefGoogle Scholar

  • 50.

    Dallas PB, Flanagan JL, Nightingale BN, Morris BJ. Polymerase chain reaction for fast, nonradioactive detection of high- and low-risk papillomavirus types in routine cervical specimens and in biopsies. J Med Virol 1989; 27:105–11.CrossrefGoogle Scholar

  • 51.

    Morris BJ, Rose BR, Flanagan JL, McKinnon KJ, Loo CY, Thompson CH, et al. Automated polymerase chain reaction for papillomavirus screening of cervicovaginal lavages: comparison with dot-blot hybridization in a sexually transmitted diseases clinic population. J Med Virol 1990; 32:22–30.CrossrefGoogle Scholar

  • 52.

    Venturoli S, Bonvicini F, Cricca M, Gallinella G, Giosa F, Farinazzo F, et al. Evaluation of commercial kits for the detection and typing of human papillomavirus in cervical swabs. J Virol Methods 2002; 105:49–56.CrossrefGoogle Scholar

  • 53.

    Schlecht NF, Trevisan A, Duarte-Franco E, Rohan TE, Ferenczy A, Villa LL, et al. Viral load as a predictor of the risk of cervical intraepithelial neoplasia. Int J Cancer 2003; 103:519–24.CrossrefGoogle Scholar

  • 54.

    Lorincz AT, Reid R, Jenson AB, Greenberg MD, Lancaster W, Kurman RJ. Human papillomavirus infection of the cervix: relative risk associations of 15 common anogenital types. Obstet Gynecol 1992; 79:328–37.CrossrefGoogle Scholar

  • 55.

    Fujinaga Y, Shimada M, Okazawa K, Fukushima M, Kato I, Fujinaga K. Simultaneous detection and typing of genital human papillomavirus DNA using the polymerase chain reaction. J Gen Virol 1991; 72:1029–44.CrossrefGoogle Scholar

  • 56.

    Molijn A, Kleter B, Quint W, van Doorn LJ. Molecular diagnosis of human papillomavirus (HPV) infections. J Clin Virol 2005; 32(Suppl 1):S43–S51.CrossrefGoogle Scholar

  • 57.

    Noffsinger AE, Suzuk L, Hui YZ, Gal AA, Fenoglio-Preiser CM. Differential sensitivities of E6 type-specific and L1 consensus primers in the detection of human papillomavirus in anal carcinoma. Mod Pathol 1995; 8:509–14.Google Scholar

  • 58.

    Park JS, Leake JF, Sharma BK, Toki T, Kessis TD, Ambros RA, et al. Variability in β-globin and HPV DNA amplification by PCR from fixed tissues. Mod Pathol 1991; 4:667–70.Google Scholar

  • 59.

    Stoler MH, Rhodes CR, Whitbeck A, Wolinsky SM, Chow LT, Broker TR. Human papillomavirus type 16 and 18 gene expression in cervical neoplasias. Human Pathol 1992; 23:117–28.CrossrefGoogle Scholar

  • 60.

    Dürst M, Gallahan D, Jay G, Rhim JS. Glucocorticoid-enhanced neoplastic transformation of human keratinocytes by human papillomavirus type 16 and an activated ras oncogene. Virology 1989; 173:767–71.CrossrefGoogle Scholar

  • 61.

    Munoz N, Bosch FX, de Sanjose S, Tafur L, Izarzugaza I, Gili M, et al. The causal link between human papillomavirus and invasive cervical cancer: a population-based case-control study in Colombia and Spain. Int J Cancer 1992; 52:743–9.CrossrefGoogle Scholar

  • 62.

    Eluf-Neto J, Booth M, Munoz N, Bosch FX, Meijer CJ, Walboomers JM. Human papillomavirus and invasive cervical cancer in Brazil. Br J Cancer 1994; 69:114–9.CrossrefGoogle Scholar

  • 63.

    Guerrero E, Daniel RW, Bosch FX, Castellsague X, Munoz N, Gili M, et al. Comparison of ViraPap, Southern hybridization, and polymerase chain reaction methods for human papillomavirus identification in an epidemiological investigation of cervical cancer. J Clin Microbiol 1992; 30:2951–9.Google Scholar

  • 64.

    Smits HL, Bollen LJ, Tjong-A-Hung SP, Vonk J, Van Der Velden J, Ten Kate FJ, et al. Intermethod variation in detection of human papillomavirus DNA in cervical smears. J Clin Microbiol 1995; 33:2631–6.Google Scholar

  • 65.

    Huang L-W, Chao S-L, Chen P-H, Chou H-P. Multiple HPV genotypes in cervical carcinomas: improved DNA detection and typing in archival tissues. J Clin Virol 2004; 29:271–6.CrossrefGoogle Scholar

  • 66.

    Depuydt CE, Vereecken AJ, Salembier GM, Vanbrabant AS, Boels LA, van Herck E, et al. Thin-layer liquid-based cervical cytology and PCR for detecting and typing human papillomavirus DNA in Flemish women. Br J Cancer 2003; 88:560–6.CrossrefGoogle Scholar

About the article

Corresponding author: Brian J. Morris, Basic & Clinical Genomics Laboratory, School of Medical Sciences and Institute for Biomedical Research, Building F13, The University of Sydney, NSW 2006, Australia Phone: +61-2-9351 3688, Fax: +61-2-9351 2227,

Received: 2005-06-29

Accepted: 2005-09-05

Published Online: 2005-10-19

Published in Print: 2005-11-01

Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/CCLM.2005.203.

Export Citation

©2005 by Walter de Gruyter Berlin New York. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Simone Belobrov, Alyssa M. Cornall, Richard J. Young, Kendrick Koo, Christopher Angel, David Wiesenfeld, Danny Rischin, Suzanne M. Garland, and Michael McCullough
Journal of Oral Pathology & Medicine, 2017
Nor Azizah Parmin, Uda Hashim, and Subash C.B. Gopinath
International Journal of Biological Macromolecules, 2017
M. Cavalar and D. Beyer
Der Gynäkologe, 2016, Volume 49, Number 5, Page 311
Osvaldo T. Vázquez-Martínez, Anajulia González-Betancourt, María Carmen Barboza-Cerda, Sergio E. González-González, Ángel Lugo-Trampe, Oliverio Welsh, Augusto Rojas-Martínez, Herminia G. Martínez-Rodríguez, Jorge Ocampo-Candiani, and Rocío Ortiz-López
International Journal of Dermatology, 2016, Volume 55, Number 7, Page 745
N. Dudding and J. Crossley
Cytopathology, 2013, Volume 24, Number 5, Page 283
Patrick Roos, Paul A. Orlando, Richard M. Fagerstrom, and John W. Pepper
Scientific Reports, 2015, Volume 5, Number 1
Daniel Weiss, Thomas Heinkele, and Claudia Rudack
Journal of Medical Virology, 2015, Volume 87, Number 5, Page 860
Ryan C. Chai, Duncan Lambie, Mukesh Verma, and Chamindie Punyadeera
Cancer Medicine, 2015, Volume 4, Number 4, Page 596
Linqian Wang, Baiping Wu, Junjun Li, and Liyu Chen
Journal of Medical Virology, 2015, Volume 87, Number 3, Page 516
Andreas Kaiser, Brigitte Jenewein, Haymo Pircher, Ursula Rostek, Pidder Jansen-Dürr, and Werner Zwerschke
Virus Genes, 2015, Volume 50, Number 1, Page 12
O.K. Vintermyr, O. Iversen, S. Thoresen, W. Quint, A. Molijn, S. de Souza, D. Rosillon, and K. Holl
Gynecologic Oncology, 2014, Volume 133, Number 2, Page 159
Tiatou Souho and Bahia Bennani
Journal of Virological Methods, 2014, Volume 196, Page 45
Malene F. Svahn, Mette T. Faber, Jane Christensen, Bodil Norrild, and Susanne K. Kjaer
Acta Obstetricia et Gynecologica Scandinavica, 2014, Volume 93, Number 1, Page 6
D. C. Damin, P. K. Ziegelmann, and A. P. Damin
Colorectal Disease, 2013, Volume 15, Number 8, Page e420
Benny Kirschner, Jette Junge, Katsiaryna Holl, Mats Rosenlund, Sabrina Collas de Souza, Wim Quint, Anco Molijn, David Jenkins, and Doris Schledermann
Acta Obstetricia et Gynecologica Scandinavica, 2013, Volume 92, Number 9, Page 1023
A. Trevisan, N. F. Schlecht, A. V. Ramanakumar, L. L. Villa, and E. L. Franco
Journal of General Virology, 2013, Volume 94, Number Pt_8, Page 1850
Wiebren A. Tjalma, Alison Fiander, Olaf Reich, Ned Powell, Andrzej M. Nowakowski, Benny Kirschner, Robert Koiss, John O'Leary, Elmar A. Joura, Mats Rosenlund, Brigitte Colau, Doris Schledermann, Kersti Kukk, Vasileia Damaskou, Maria Repanti, Radu Vladareanu, Larisa Kolomiets, Alevtina Savicheva, Elena Shipitsyna, Jaume Ordi, Anco Molijn, Wim Quint, Alice Raillard, Dominique Rosillon, Sabrina Collas De Souza, David Jenkins, and Katsiaryna Holl
International Journal of Cancer, 2013, Volume 132, Number 4, Page 854
Lina Michala, Elena Argyri, Elpida Tsimplaki, Artemis Tsitsika, Chryssa Bakoula, Aris Antsaklis, and Efstathia Panotopoulou
Gynecologic Oncology, 2012, Volume 126, Number 2, Page 207
Deepti Joshi and Gertrude Case Buehring
Breast Cancer Research and Treatment, 2012, Volume 135, Number 1, Page 1
Elisa Martró, María José Valencia, Antoni Tarrats, Eva Castellà, Mariona Llatjós, Sara Franquesa, Lurdes Matas, and Vicente Ausina
Enfermedades Infecciosas y Microbiología Clínica, 2012, Volume 30, Number 5, Page 225
A. Yasmeen, R. Ricciardi, A. Kassab, T.A. Bismar, and A.-E. Al Moustafa
The Breast, 2007, Volume 16, Number 5, Page 445
A.P. Damin, D.C. Damin, and C.O.P. Alexandre
The Breast, 2007, Volume 16, Number 3, Page 222
I. Nazarenko, L. Kobayashi, J. Giles, C. Fishman, G. Chen, and A. Lorincz
Journal of Virological Methods, 2008, Volume 154, Number 1-2, Page 76
Christine F.W. Vermeulen, Ekaterina S. Jordanova, Károly Szuhai, Sandra Kolkman-Uljee, M. Albert Vrede, Alexander A.W. Peters, Ed Schuuring, and Gert Jan Fleuren
Cancer Genetics and Cytogenetics, 2007, Volume 175, Number 2, Page 132
Gaëlle Boulet, Caroline Horvath, Davy Vanden Broeck, Shaira Sahebali, and Johannes Bogers
The International Journal of Biochemistry & Cell Biology, 2007, Volume 39, Number 11, Page 2006
Brian J. Morris and Barbara R. Rose
Clinical Chemical Laboratory Medicine, 2007, Volume 45, Number 5
Anthony N. Snow and Jennifer Laudadio
Advances in Anatomic Pathology, 2010, Volume 17, Number 6, Page 394
Donna Dehn, Kathleen C. Torkko, and Kenneth R. Shroyer
Cancer, 2007, Volume 111, Number 1, Page 1
Gitana Maria Aceto, Angela Rosaria Solano, Maria Isabel Neuman, Serena Veschi, Annalisa Morgano, Sara Malatesta, Reinaldo Daniel Chacon, Carmen Pupareli, Mercedes Lombardi, Pasquale Battista, Antonio Marchetti, Renato Mariani-Costantini, and Ernesto Jorge Podestà
Breast Cancer Research and Treatment, 2010, Volume 122, Number 3, Page 671
C. E. Depuydt, G. A. V. Boulet, C. A. J. Horvath, I. H. Benoy, A. J. Vereecken, and J. J. Bogers
Journal of Cellular and Molecular Medicine, 2007, Volume 11, Number 4, Page 881
Christina S. Kong, Bonnie L. Balzer, Megan L. Troxell, Bruce K. Patterson, and Teri A. Longacre
The American Journal of Surgical Pathology, 2007, Volume 31, Number 1, Page 33

Comments (0)

Please log in or register to comment.
Log in