Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Greaves, Ronda / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter


IMPACT FACTOR 2018: 3.638

CiteScore 2018: 2.44

SCImago Journal Rank (SJR) 2018: 1.191
Source Normalized Impact per Paper (SNIP) 2018: 1.205

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 43, Issue 11

Issues

Impact of standardized calibration on the inter-assay variation of 14 automated assays for the measurement of creatinine in human serum

Sophie Séronie-Vivien / Marie-Madeleine Galteau / Marie-Christine Carlier / Aoumeur Hadj-Aissa / Anne-Marie Hanser / Bernadette Hym / Alain Marchal / Odile Michotey / Claire Pouteil-Noble / Michel Sternberg / Armand Perret-Liaudet / of the Société Française de Biologie Clinique (SFBC) Creatinine Working Group
Published Online: 2005-10-19 | DOI: https://doi.org/10.1515/CCLM.2005.213

Abstract

Purpose: The aim of our study was to measure the inter-assay variation and accuracy of serum creatinine assays and to assess the effect of standardized calibration procedures on this variability. Methods: We analyzed 30 human sera and three reference materials, using 17 creatinine assays (12 colorimetric, 4 enzymatic and 1 HPLC). We compared two standardized calibration procedures, using either a reference material or secondary standards, to that recommended by the manufacturers. Results: For assays calibrated according to the manufacturers' recommendations, the median inter-assay coefficient of variation (CV) was 14.2% for 20 low samples (45–150μM), and 7.7% for 10 high samples (250–350μM). The CV was significantly influenced by the calibration procedure, but none of the standardized calibration procedures significantly improved the inter-assay variability. However, a significant decrease in CV was noted within each type of assay method (colorimetric or enzymatic) when the standardized calibration used standards of level(s) close to the concentrations to be measured. Only the compensated Jaffe technique and the amido-hydrolase assay showed bias of less than 10%. Conclusions: Standardizing calibration procedures is unlikely to decrease the analytical variability of creatinine assays enough to allow uniform and reliable use of the equations for estimation of glomerular filtration rate.

Keywords: compensated Jaffe technique; creatinine; enzymatic techniques; glomerular filtration rate; inter-laboratory imprecision; Jaffe techniques

References

  • 1.

    Cockcroft D, Gault M. Prediction of creatinine clearance from serum creatinine. Nephron 1976; 16:31–41.CrossrefGoogle Scholar

  • 2.

    Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 1999; 130:461–70.Google Scholar

  • 3.

    Wright JG, Boddy AV, Highley M, Fenwick J, McGill A, Calvert AH. Estimation of glomerular filtration rate in cancer patients. Br J Cancer 2001; 84:452–9.Google Scholar

  • 4.

    Verhave JC, Balje-Volkers CP, Hillege HL, de Zeeuw D, de Jong PE. The reliability of different formulae to predict creatinine clearance. J Intern Med 2003; 253:563–73.Google Scholar

  • 5.

    Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 1976; 58:259–63.Google Scholar

  • 6.

    Leger F, Bouissou F, Coulais Y, Tafani M, Chatelut E. Estimation of glomerular filtration rate in children. Pediatr Nephrol 2002; 17:903–7.CrossrefWeb of ScienceGoogle Scholar

  • 7.

    Carobene A, Ferrero C, Ceriotti F, Modenese A, Besozzi M, de Giorgi E, et al. Creatinine measurement proficiency testing: assignment of matrix-adjusted ID GC-MS target values. Clin Chem 1997; 43:1342–7.Google Scholar

  • 8.

    Delanghe J. Standardization of creatinine determination and its consequences for the clinician. Acta Clin Belg 2002; 57:172–5.CrossrefGoogle Scholar

  • 9.

    Hanser AM, Hym B, Michotey O, Gascht D, Marchal A, Minery M, et al. [Comparison of methods for the determination of blood creatinine]. Ann Biol Clin (Paris) 2001; 59:737–42.Google Scholar

  • 10.

    Jaudon T, Seronie-Vivien S, Chatelut E, Chanut C, Favre G. [Comparison of the modified Jaffe method and an enzymatic method for the measurement of serum creatinine: practical consequences of a method change in the milieu of laboratory of oncologic clinical biology]. Ann Biol Clin (Paris) 2000; 58:499–504.Google Scholar

  • 11.

    Lawson N, Lang T, Broughton A, Prinsloo P, Turner C, Marenah C. Creatinine assays: time for action? Ann Clin Biochem 2002; 39:599–602.Google Scholar

  • 12.

    Vassault A, Cherruau B, Labbe D, Alabrune B, Baltassat P, Bonete R, et al. [Serum creatinine assay: results of a multicentre study with 16 analytical systems]. Ann Biol Clin (Paris) 1992; 50:81–95.Google Scholar

  • 13.

    Couchoud C, Pozet N, Labeeuw M, Pouteil-Noble C. Screening early renal failure: cut-off values for serum creatinine as an indicator of renal impairment. Kidney Int 1999; 55:1878–84.Google Scholar

  • 14.

    Labbe D, Vassault A, Cherruau B, Baltassat P, Bonete R, Carroger G, et al. [Method selected for the determination of creatinine in plasma or serum. Choice of optimal conditions of measurement]. Ann Biol Clin (Paris) 1996; 54:285–98.Google Scholar

  • 15.

    Bland JM, Altman DG. Comparing methods of measurement: why plotting difference against standard method is misleading. Lancet 1995; 346:1085–7.Google Scholar

  • 16.

    Schneider V, Henschel V, Tadjalli-Mehr K, Mansmann U, Haefeli WE. Impact of serum creatinine measurement error on dose adjustment in renal failure. Clin Pharmacol Ther 2003; 74:458–67.CrossrefGoogle Scholar

  • 17.

    Blijenberg BG, Brouwer RJ, Baadenhuijsen H, Boerma GJ. Creatinine and surveys: an assessment. Eur J Clin Chem Clin Biochem 1995; 33:855–8.Google Scholar

  • 18.

    Ross JW, Miller WG, Myers GL, Praestgaard J. The accuracy of laboratory measurements in clinical chemistry: a study of 11 routine chemistry analytes in the College of American Pathologists Chemistry Survey with fresh frozen serum, definitive methods, and reference methods. Arch Pathol Lab Med 1998; 122:587–608.Google Scholar

  • 19.

    Coresh J, Astor BC, McQuillan G, Kusek J, Greene T, Van Lente F, et al. Calibration and random variation of the serum creatinine assay as critical elements of using equations to estimate glomerular filtration rate. Am J Kidney Dis 2002; 39:920–9.Google Scholar

  • 20.

    Leger F, Seronie-Vivien S, Makdessi J, Lochon I, Delord JP, Sarda C, et al. Impact of the biochemical assay for serum creatinine measurement on the individual carboplatin dosing: a prospective study. Eur J Cancer 2002; 38:52–6.CrossrefGoogle Scholar

  • 21.

    Ando M, Minami H, Ando Y, Saka H, Sakai S, Yamamoto M, et al. Multi-institutional validation study of carboplatin dosing formula using adjusted serum creatinine level. Clin Cancer Res 2000; 6:4733–8.Google Scholar

  • 22.

    Wuyts B, Bernard D, Van den NN, Van de WJ, Van Vlem B, De Smet R, et al. Reevaluation of formulas for predicting creatinine clearance in adults and children, using compensated creatinine methods. Clin Chem 2003; 49:1011–4.Google Scholar

  • 23.

    Junge W, Wilke B, Halabi A, Klein G. Determination of reference intervals for serum creatinine, creatinine excretion and creatinine clearance with an enzymatic and a modified Jaffe method. Clin Chim Acta 2004; 344:137–48.Google Scholar

  • 24.

    K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Kidney Disease Outcome Quality Initiative. Am J Kidney Dis 2002; 39:1–246.Google Scholar

  • 25.

    ANAES. Diagnostic de l'insuffisance rénale chez l'adulte: recommandations pour la pratique clinique, 2002.Google Scholar

About the article

Corresponding author: Sophie Séronie-Vivien, Department of Clinical Biology, Institut Claudius Regaud, 20-24 rue du Pont St Pierre, 31052 Toulouse Cedex, France Phone: +33-5-61424221, Fax: +33-5-61424631,


Received: 2005-03-26

Accepted: 2005-07-30

Published Online: 2005-10-19

Published in Print: 2005-11-01


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), Volume 43, Issue 11, Pages 1227–1233, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/CCLM.2005.213.

Export Citation

©2005 by Walter de Gruyter Berlin New York.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
X. Chu, K. Bleasby, G. H. Chan, I. Nunes, and R. Evers
Drug Metabolism and Disposition, 2016, Volume 44, Number 9, Page 1498
[2]
Gary L. Myers
Scandinavian Journal of Clinical and Laboratory Investigation, 2008, Volume 68, Number sup241, Page 57
[3]
P. Delanaye, N. Maillard, L. Thibaudin, and C. Mariat
EMC - Néphrologie, 2006, Volume 1, Number 1, Page 1
[4]
Pierre Delanaye, Etienne Cavalier, Jean-Paul Cristol, and Joris R. Delanghe
Journal of Nephrology, 2014, Volume 27, Number 5, Page 467
[5]
A. Boutten
EMC - Biologie médicale, 2010, Volume 5, Number 1, Page 1
[6]
A. Davenport, E. Cholongitas, E. Xirouchakis, and A. K. Burroughs
Nephrology Dialysis Transplantation, 2011, Volume 26, Number 9, Page 2735
[7]
Giuseppe Fede, Gennaro D’Amico, Vasiliki Arvaniti, Emmanuel Tsochatzis, Giacomo Germani, Dimosthenis Georgiadis, Alberto Morabito, and Andrew Kenneth Burroughs
Journal of Hepatology, 2012, Volume 56, Number 4, Page 810
[8]
Laurence Piéroni, Pierre Delanaye, Anne Boutten, Anne-Sophie Bargnoux, Eric Rozet, Vincent Delatour, Marie-Christine Carlier, Anne-Marie Hanser, Etienne Cavalier, Marc Froissart, and Jean-Paul Cristol
Clinica Chimica Acta, 2011, Volume 412, Number 23-24, Page 2070
[9]
Sophie Séronie-Vivien, François Bouissou, Sophie Dattez, Yvon Coulais, Anne-Marie Hanser, Bernadette Hym, and Etienne Chatelut
Clinical Chemical Laboratory Medicine, 2008, Volume 46, Number 2
[10]
Joris R. Delanghe, Christa Cobbaert, Marie-Madeleine Galteau, Aimo Harmoinen, Rob Jansen, Rolf Kruse, Päivi Laitinen, Linda M. Thienpont, Birgitte Wuyts, Cas Weykamp, and Mauro Panteghini
Clinical Chemistry and Laboratory Medicine, 2008, Volume 46, Number 9
[11]
Georg Berding, Siegfried Geisler, Michael Melter, Patricia Marquardt, Astrid Lühr, Friedemann Scheller, Bernd O. Knoop, Eva-Doreen Pfister, Lars Pape, Lutz Bischoff, Wolfram H. Knapp, and Jochen H. H. Ehrich
Pediatric Transplantation, 2010, Volume 14, Number 6, Page 786
[12]
E. CHOLONGITAS, V. SHUSANG, L. MARELLI, D. NAIR, M. THOMAS, D. PATCH, A. BURNS, P. SWENY, and A. K. BURROUGHS
Alimentary Pharmacology & Therapeutics, 2007, Volume 26, Number 7, Page 969
[13]
Patrick Mc Laughlin, Joseph Eustace, Sean Mc Sweeney, Sebastian Mc Williams, Kevin O’Regan, Michael O’Connor, Denis Kelly, and Michael M. Maher
European Radiology, 2010, Volume 20, Number 3, Page 604

Comments (0)

Please log in or register to comment.
Log in