Jump to ContentJump to Main Navigation
Show Summary Details

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

IMPACT FACTOR increased in 2015: 3.017
Rank 5 out of 30 in category Medical Laboratory Technology in the 2014 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2015: 0.873
Source Normalized Impact per Paper (SNIP) 2015: 0.982
Impact per Publication (IPP) 2015: 2.238

See all formats and pricing


Select Volume and Issue


30,00 € / $42.00 / £23.00

Get Access to Full Text

A spectrophotometric micromethod for determining erythrocyte protoporphyrin-IX in whole blood or erythrocytes

Guenther Kufner1 / Helmut Schlegel2 / Reinhard Jäger3




Corresponding author: Guenther Kufner, Occupational Health Service AMD-Linz, Kaplanhofstraße 1, Linz, Austria

Citation Information: Clinical Chemical Laboratory Medicine. Volume 43, Issue 2, Pages 183–191, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/CCLM.2005.031, April 2005

Publication History

August 3, 2004
November 10, 2004


An increased concentration of erythrocyte protoporphyrin-IX in whole blood or erythrocytes is a valuable diagnostic indicator for acquired porphyrias, e.g., iron deficiency anemia and lead poisoning, and for inherited porphyrias. We developed a spectrophotometric micromethod for determining erythrocyte protoporphyrin-IX. In this method, exhaustive release of erythrocyte porphyrins is achieved using hydroquinone and formic acid. The clean-up procedure for 50 μL of whole blood or erythrocytes covers three steps of liquid/liquid solvent partition: two partitions using diethyl and diisopropyl ether and HCl 2.5 mol/L, and one buffered step using ammonium formate. Determinations of erythrocyte protoporphyrin-IX are possible by: (a) absorption using three wavelengths, Rimington's constant and a millimolar absorptivity coefficient mɛ 408.8=294.3 L·mmol -1·cm -1 according to With; and (b) 2nd derivative, which is linked to mɛ 408.8. Determination of erythrocyte protoporphyrin-IX using a 2nd derivative algorithm showed better spectral resolution and higher sensitivity at a five-fold lower detection limit compared to absorption. Within-run precision of medium and high levels was found for absorption and for 2nd derivative with a coefficient of variation (CV) of 1.4–1.9% (n=10). Total precision evaluated was CV=2.5–8.3% (n=20). Levels of reference intervals could only be measured using the 2nd derivative (CV 2.9%). Linearity was proved to E=1.0. Recoveries of protoporphyrin-IX ranged from 95.3% to 103.0%. Method comparison was carried out using a fluorimetric reference method (Piomelli). Reference intervals for gender groups are discussed.

Keywords: absorption; dechelated zinc-protoporphyrin-IX; hemin; hydroquinone/formic acid; second derivative; unchelated protoporphyrin-IX (base)

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Xiaoquan Lu, Dongxia Zhao, Zhengen Song, Bowan Wu, Bingzhang Lu, Xibin Zhou, and Zhonghua Xue
Biosensors and Bioelectronics, 2011, Volume 27, Number 1, Page 172

Comments (0)

Please log in or register to comment.