Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year


IMPACT FACTOR 2016: 3.432

CiteScore 2016: 2.21

SCImago Journal Rank (SJR) 2016: 1.000
Source Normalized Impact per Paper (SNIP) 2016: 1.112

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 43, Issue 6 (Jun 2005)

Issues

Spectrophotometric determination of urinary iodine by the Sandell-Kolthoff reaction subsequent to dry alkaline ashing. Results from the Czech Republic in the period 1994–2002

Radovan Bílek / Jiří Bednář / Václav Zamrazil
Published Online: 2005-07-05 | DOI: https://doi.org/10.1515/CCLM.2005.100

Abstract

The Czech Republic is an iodine-deficient area. Insufficient iodine intake was reduced by enriching cooking salt with iodine in the range 20–34mgI/kg. An important indicator for tracking changes in iodine nutrition over time is accurate information about urinary iodine concentrations in the population. In this paper we describe and characterize our method used for the determination of iodine in biological material, which is based on alkaline ashing of urine specimens preceding Sandell-Kolthoff reaction using brucine as a colorimetric marker. The losses of radioiodine added during sample preparation have not exceeded 0.001%. The detection limit is 2.6μgI/L and the limit of quantification is 11.7μgI/L, with intra-assay precision of 4% and inter-assay precision of 4.9%. During the period 1994–2002, the urinary iodine concentration was determined in 29,612 samples in the Institute of Endocrinology. The mean basal urinary iodine concentrations±SD were 115±69μgI/L. Of the samples, 0.7% were in severe (<20μgI/L), 9.6% in moderate (20–49μgI/L), 40.1% in mild (50–99μgI/L), 35.6% in adequate (100–200μgI/L), and 14.0% in more than adequate (>200μgI/L) subsets of iodine nutrition. A statistically significant (p<0.00001) difference was found between mean male (127μgI/L) and female (112μgI/L) urinary iodine, and an inversely proportional trend also exists in the age-related data.

Keywords: analysis; iodine; population; spectrophotometry; urine.

References

  • 1

    Delange F. The disorders induced by iodine deficiency. Thyroid 1994; 4: 107–28. CrossrefGoogle Scholar

  • 2

    Hetzel BS. The iodine deficiency disorders. In: Delange F, Dunn JT, Glioner D, editors. Iodine deficiency in Europe. NATO ASI Series A: Life Sciences, vol. 241. New York: Plenum Press, 1993:25. Google Scholar

  • 3

    Maberly GF. Iodine deficiency disorders: contemporary scientific issues. J Nutr 1994; 124(Suppl 8): 1473–8. Google Scholar

  • 4

    Delange F. Iodine deficiency in Europe and its consequences: an update. Eur J Nucl Med Mol Imaging 2002; 29(Suppl 2): 404–16. CrossrefGoogle Scholar

  • 5

    Vitti P, Rago T, Aghini-Lombardi F, Pinchera A. Iodine deficiency disorders in Europe. Public Health Nutr 2001; 4: 529–35. CrossrefGoogle Scholar

  • 6

    Hetzel BS. Eliminating iodine deficiency disorders – the role of the International Council in the global partnership. Bull World Health Organ 2002; 80: 410–3. Google Scholar

  • 7

    Silink K, Reinsenauer R, Chaloupsky J. The problem of mapping endemic goiter in Czechoslovakia. Rev Czech Med 1959; 5: 73–88. Google Scholar

  • 8

    Conference “Standardization of ultrasound and urinary iodine determination for assessing iodine status”: report of a technical consultation. IDD Newsl 2000; 16: 19–23. Google Scholar

  • 9

    Bednář J, Rohling S, Vohnout S. Contribution to determining protein iodine in the blood serum. Cesk Farm 1964; 13: 203–9. Google Scholar

  • 10

    May W, Wu D, Eastman C, Bourdoux P, Maberly G. Evaluation of automated urinary iodine methods: problems of interfering substances identified. Clin Chem 1990; 36: 865–9. Google Scholar

  • 11

    Ford HC, Johnson LA. Ascorbic acid interferes with an automated urinary iodide determination based on the ceric-arsenious acid reaction. Clin Chem 1991; 37: 759. Google Scholar

  • 12

    Pino S, Fang SL, Braverman LE. Ammonium persulfate: a new and safe method for measuring urinary iodine by ammonium persulfate oxidation. Exp Clin Endocrinol Diabetes 1998; 106(Suppl 3): 22–7. CrossrefGoogle Scholar

  • 13

    Dunn JT, Crutchfield HE, Gutekunst R, Dunn AD. Methods for measuring iodine in urine. International Council for Control of Iodine Deficiency Disorders. ICCIDD/UNICEF/WHO: The Netherlands, 1993:58–62. Google Scholar

  • 14

    Pino S, Fang SL, Braverman LE. Ammonium persulfate: a safe alternative oxidizing reagent for measuring urinary iodine. Clin Chem 1996; 42: 239–43. Google Scholar

  • 15

    Fallouch S, Lejeune PJ, Barbaria J, Carayon P, Mallet B. Urinary iodine analysis: an alternative method for digestion of urine samples. Clin Chem 2004; 50: 780–2. CrossrefGoogle Scholar

  • 16

    Dunn JT, Crutchfield HE, Gutekunst R, Dunn AD. Two simple methods for measuring iodine in urine. Thyroid 1993; 3: 119–23. CrossrefGoogle Scholar

  • 17

    Tomiyasu T, Nonaka M, Uchikado M, Anazawa K, Sakamoto H. Kinetic determination of total iodine in urine and foodstuffs using a mixed acid as a pretreatment agent. Anal Sci 2004; 20: 391–3. CrossrefGoogle Scholar

  • 18

    Tsuda K, Namba H, Nomura T, Yokoyama N, Yamashita S, Izumi M, et al. Automated measurement of urinary iodine with use of ultraviolet irradiation. Clin Chem 1995; 41: 581–5. Google Scholar

  • 19

    Sandell EB, Kolthoff IM. Micro determination of iodine by catalytic method. Mikrochim Acta 1937; 1: 9–25. CrossrefGoogle Scholar

  • 20

    Allain P, Mauras Y, Douge C, Jaunault L, Delaporte T, Beaugrand C. Determination of iodine and bromine in plasma and urine by inductively coupled plasma mass spectrometry. Analyst 1990; 115: 813–5. CrossrefGoogle Scholar

  • 21

    Haldimann M, Zimmerli B, Als C, Gerber H. Direct determination of urinary iodine by inductively coupled plasma mass spectrometry using isotope dilution with iodine-129. Clin Chem 1998; 44: 817–24. Google Scholar

  • 22

    Dermelj M, Slejkovec Z, Byrne AR, Stegnar P, Hojker S, Porenta M, et al. Rapid radiochemical neutron activation analysis for iodine in urine by different separation techniques. Analyst 1992; 1: 443–6. CrossrefGoogle Scholar

  • 23

    Andersson S, Forsman U. Determination of total iodine in biological material by alkaline ashing and column-switching ion-pair liquid chromatography. J Chromatogr B 1997; 692: 53–9. Google Scholar

  • 24

    Odink J, Bogaards JJ, Sandman H, Egger RJ, Arkesteyn GA, de Jong P. Excretion of iodide in 24-h urine as determined by ion-pair reversed-phase liquid chromatography with electrochemical detection. J Chromatogr 1988; 431: 309–16. Google Scholar

  • 25

    Li HB, Chen F, Xu XR. Determination of iodide in seawater and urine by size exclusion chromatography with iodine-starch complex. J Chromatogr A 2001; 918: 335–9. Google Scholar

  • 26

    Yabu Y, Miyai K, Endo Y, Hata N, Iijima Y, Hayashizaki S, et al. Urinary iodide excretion measured with an iodide-selective ion electrode: studies on normal subjects of varying ages and patients with thyroid diseases. Endocrinol Jpn 1988; 35: 391–8. CrossrefGoogle Scholar

  • 27

    Pantuckova P, Krivankova L. Fast and simple method for determination of iodide in human urine, serum, sea water, and cooking salt by capillary zone electrophoresis. Electrophoresis 2004; 25: 1102–10. CrossrefGoogle Scholar

  • 28

    Yaping Z, Dongxing Y, Jixiang C, Tianshiu L, Huiqin C. Spectrophotometric determination of urinary iodine by flow-injection analysis with on-line catalytic digestion. Clin Chem 1996; 42: 2021–7. Google Scholar

  • 29

    Bilabina I, Brazier M, Bour H, Doh A, Desmet G. Evaluation of iodide deficiency in Togo using an optimized potentiometric method for iodide estimation in urine. Ann Biol Clin (Paris) 1994; 52: 261–4. Google Scholar

  • 30

    Ohashi T, Yamaki M, Pandav CS, Karmarkar MG, Irie M. Simple microplate method for determination of urinary iodine. Clin Chem 2000; 46: 529–36. Google Scholar

  • 31

    Wuethrich C, Jaeggi-Groisman SE, Gerber H. Comparison of two methods for the detection of urinary iodine used in epidemiological studies. Clin Chem Lab Med 2000; 38: 1027–31. CrossrefGoogle Scholar

  • 32

    Rendl J, Bier D, Groh T, Reiners C. Rapid urinary iodide test. J Clin Endocrinol Metab 1998; 83: 1007–12. CrossrefGoogle Scholar

  • 33

    Dunn JT, Myers HE, Dunn AD. Simple methods for assessing urinary iodine, including preliminary description of a new rapid technique (“Fast B”). Exp Clin Endocrinol Diabetes 1997; 106(Suppl 3): 10–2. Google Scholar

  • 34

    Gnat D, Dunn AD, Chaker S, Delange F, Vertongen F, Dunn JT. Fast colorimetric method for measuring urinary iodine. Clin Chem 2003; 49: 186–8. CrossrefGoogle Scholar

  • 35

    Plantin-Carrenard E, Cattan F, Aurengo A, Dumerat B, Foglietti MJ, Beaudeux JL. Analytical aspects of the semiquantitative determination of urinary iodine using ferroin: interest for a rapid screening of iodine deficiency or excess. Ann Biol Clin (Paris) 2004; 62: 456–61. Google Scholar

  • 36

    Hintze J. NCSS and PASS, Number Cruncher Statistical System. http://www.ncss.com (accessed 2001). Google Scholar

  • 37

    Delange F, Podoba J, Vertongen F, Ott W. Thyromobil project: standardized iodine deficiency evaluation in Europe. IDD Newsl 1995; 11: 33–4. Google Scholar

  • 38

    Delange F, de Benoist B, Burgi H. Determining median urinary iodine concentration that indicates adequate iodine intake at population level. Bull World Health Organ 2002; 80: 633–6. Google Scholar

  • 39

    Dahl L, Opsahl JA, Meltzer HM, Julshamn K. Iodine concentration in Norwegian milk and dairy products. Br J Nutr 2003; 90: 679–85. CrossrefGoogle Scholar

  • 40

    Als C, Haldimann M, Burgi E, Donati F, Gerber H, Zimmerli B. Swiss pilot study of individual seasonal fluctuations of urinary iodine concentration over two years: is age-dependency linked to the major source of dietary iodine? Eur J Clin Nutr 2003; 57: 636–46. CrossrefGoogle Scholar

  • 41

    WHO. Assessment of iodine deficiency disorders and monitoring their elimination, 2nd ed. Publication WHO/NHD/01.1, 2001. Google Scholar

  • 42

    Zamrazil V, Bílek R, Čerovska J, Delange F. The elimination of iodine deficiency in the Czech Republic: the steps towards success. Thyroid 2004; 14: 49–56. CrossrefGoogle Scholar

About the article

Corresponding author: Radovan Bílek, Ing, PhD, Institute of Endocrinology, Národní 8, 116 94 Prague 1, Czech Republic Phone: +42-2-24905251, Fax: +42-2-24905325,


Received: 2004-10-13

Accepted: 2005-04-01

Published Online: 2005-07-05

Published in Print: 2005-06-01


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/CCLM.2005.100.

Export Citation

© Walter de Gruyter Berlin New York. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Michala Vosátková, Denisa Žd′árská Janíčková, Václav Zamrazil, Martina Salátová, Martin Hill, and Karel Vondra
Journal of Applied Biomedicine, 2017, Volume 15, Number 2, Page 146
[2]
Katerina Krylova, Radovan Bilek, Jiri Kulicka, Petr Dejmek, Milan Bayer, Marian Kacerovsky, and David Neumann
The Journal of Maternal-Fetal & Neonatal Medicine, 2016, Page 1
[3]
Marta Suárez Rodríguez, Cristina Azcona San Julián, and Valentín Alzina de Aguilar
Endocrinología y Nutrición (English Edition), 2013, Volume 60, Number 7, Page 352
[4]
Marta Suárez Rodríguez, Cristina Azcona San Julián, and Valentín Alzina de Aguilar
Endocrinología y Nutrición, 2013, Volume 60, Number 7, Page 352
[5]
Marta Suárez-Rodríguez, Cristina Azcona-San Julián, and Valentín Alzina de Aguilar
International Journal of Developmental Neuroscience, 2012, Volume 30, Number 6, Page 435
[6]
Lucie Sosvorová, Petra Mikšátková, Marie Bičíková, Nataša Kaňová, and Oldřich Lapčík
Food and Chemical Toxicology, 2012, Volume 50, Number 8, Page 2774
[7]
Ghulam Abbas Kandhro, Tasneem Gul Kazi, Sirajuddin, Naveed Kazi, Hassan Imran Afridi, Muhammad Baial Arain, Jameel Ahmed Baig, Abdul Qadir Shah, Sham Kumar Wadhwa, and Faheem Shah
Russian Journal of Electrochemistry, 2011, Volume 47, Number 12, Page 1355
[8]
Antonio Moreda-Piñeiro, Vanessa Romarís-Hortas, and Pilar Bermejo-Barrera
Journal of Analytical Atomic Spectrometry, 2011, Volume 26, Number 11, Page 2107
[9]
Joaquim A. Nóbrega, Mirian C. Santos, Rafael A. de Sousa, Solange Cadore, Ramon M. Barnes, and Mark Tatro
Spectrochimica Acta Part B: Atomic Spectroscopy, 2006, Volume 61, Number 5, Page 465
[10]
R. W. Leggett
Radiation Research, 2010, Volume 174, Number 4, Page 496

Comments (0)

Please log in or register to comment.
Log in