Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year


IMPACT FACTOR 2016: 3.432

CiteScore 2016: 2.21

SCImago Journal Rank (SJR) 2016: 1.000
Source Normalized Impact per Paper (SNIP) 2016: 1.112

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 43, Issue 7 (Jul 2005)

Issues

“Coelionomics”: towards understanding the molecular pathology of coeliac disease

Begoña Diosdado
  • Complex Genetics Section, DBG-Department of Medical Genetics, University Medical Centre, Utrecht, The Netherlands
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Erica van Oort
  • Complex Genetics Section, DBG-Department of Medical Genetics, University Medical Centre, Utrecht, The Netherlands
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Cisca Wijmenga
  • Complex Genetics Section, DBG-Department of Medical Genetics, University Medical Centre, Utrecht, The Netherlands
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2005-08-22 | DOI: https://doi.org/10.1515/CCLM.2005.117

Abstract

Coeliac disease (CD) is an inflammatory disorder of the small intestine characterised by a permanent intolerance to gluten-derived peptides. When gluten-derived peptides reach the lamina propria in CD patients, they provoke specific changes in the mucosa of their small intestine. Although the susceptibility to CD is strongly determined by environmental gluten, it is clearly a common genetic disorder. Important genetic factors for CD are the HLA-DQ genes located in the MHC region on chromosome 6 [ HLA-DQ2 (95%) or HLA-DQ8 (∼5%) heterodimers]. So far, the only treatment for CD consists of a life-long gluten-free diet. A key question in CD is why the gluten-derived peptides are resistant to further breakdown by endogenous proteases and how, in turn, they can activate a harmful immune response in the lamina propria of genetically predisposed individuals. Four mechanisms, namely apoptosis, oxidative stress, matrix metalloproteinases and dysregulation of proliferation and differentiation, are thought to play a role in the pathophysiology of CD. Whether the genes involved in these four mechanisms play a causative role in the development of the villous atrophy or are, in fact, a consequence of the disease process is unknown. In this review we summarise these mechanisms and discuss their validity in the context of current insights derived from genetic, genomic and molecular studies. We also discuss future directions for research and the therapeutic implications for patients.

Keywords: apoptosis; coeliac disease; matrix metalloproteinases; oxidative stress; proliferation and differentiation

References

  • 1.

    Marsh MN. Gluten, major histocompatibility complex, and the small intestine. A molecular and immunobiologic approach to the spectrum of gluten sensitivity (‘celiac sprue’). Gastroenterology 1992; 102: 330–54. CrossrefGoogle Scholar

  • 2.

    Book L, Zone JJ, Neuhausen SL. Prevalence of celiac disease among relatives of sib pairs with celiac disease in US families. Am J Gastroenterol 2003; 98: 377–81. CrossrefGoogle Scholar

  • 3.

    Carnicer J, Farre C, Varea V, Vilar P, Moreno J, Artigas J. Prevalence of coeliac disease in Down's syndrome. Eur J Gastroenterol Hepatol 2001; 13: 263–7. CrossrefGoogle Scholar

  • 4.

    Bonamico M, Pasquino AM, Mariani P, Danesi HM, Culasso F, Mazzanti L, et al. Prevalence and clinical picture of celiac disease in Turner syndrome. J Clin Endocrinol Metab 2002; 87: 5495–8. CrossrefGoogle Scholar

  • 5.

    Sategna Guidetti C, Solerio E, Scaglione N, Aimo G, Mengozzi G. Duration of gluten exposure in adult coeliac disease does not correlate with the risk for autoimmune disorders. Gut 2001; 49: 502–5. CrossrefGoogle Scholar

  • 6.

    Collin P, Kaukinen K, Valimaki M, Salmi J. Endocrinological disorders and celiac disease. Endocr Rev 2002; 23: 464–83. CrossrefGoogle Scholar

  • 7.

    Greco L, Romino R, Coto I, Di Cosmo N, Percopo S, Maglio M, et al. The first large population based twin study of coeliac disease. Gut 2002; 50: 624–8. CrossrefGoogle Scholar

  • 8.

    Schuppan D. Current concepts of celiac disease pathogenesis. Gastroenterology 2000; 119: 234–42. CrossrefGoogle Scholar

  • 9.

    Maiuri L, Picarelli A, Boirivant M, Coletta S, Mazzilli MC, De Vincenzi M, et al. Definition of the initial immunologic modifications upon in vitro gliadin challenge in the small intestine of celiac patients. Gastroenterology 1996; 110: 1368–78. CrossrefGoogle Scholar

  • 10.

    Maiuri L, Ciacci C, Ricciardelli I, Vacca L, Raia V, Auricchio S, et al. Association between innate response to gliadin and activation of pathogenic T cells in coeliac disease. Lancet 2003; 362: 30–7. Google Scholar

  • 11.

    Godkin A, Jewell D. The pathogenesis of celiac disease. Gastroenterology 1998; 115: 206–10. CrossrefGoogle Scholar

  • 12.

    Meresse B, Chen Z, Ciszewski C, Tretiakova M, Bhagat G, Krausz TN, et al. Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity 2004; 21: 357–66. CrossrefGoogle Scholar

  • 13.

    Hue S, Mention JJ, Monteiro RC, Zhang S, Cellier C, Schmitz J, et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 2004; 21: 367–77. CrossrefGoogle Scholar

  • 14.

    Ciccocioppo R, Di Sabatino A, Parroni R, D'Alo S, Pistoia MA, Doglioni C, et al. Cytolytic mechanisms of intraepithelial lymphocytes in coeliac disease (CoD). Clin Exp Immunol 2000; 120: 235–40. CrossrefGoogle Scholar

  • 15.

    Maiuri L, Ciacci C, Raia V, Vacca L, Ricciardelli I, Raimondi F, et al. FAS engagement drives apoptosis of enterocytes of coeliac patients. Gut 2001; 48: 418–24. CrossrefGoogle Scholar

  • 16.

    Di Sabatino A, Ciccocioppo R, D'Alo S, Parroni R, Millimaggi D, Cifone MG, et al. Intraepithelial and lamina propria lymphocytes show distinct patterns of apoptosis whereas both populations are active in Fas based cytotoxicity in coeliac disease. Gut 2001; 49: 380–6. CrossrefGoogle Scholar

  • 17.

    Ehrmann J Jr, Kolek A, Kod'ousek R, Zapletalova J, Lisova S, Murray PG, et al. Immunohistochemical study of the apoptotic mechanisms in the intestinal mucosa during children's coeliac disease. Virchows Arch 2003; 442: 453–61. Google Scholar

  • 18.

    Giovannini C, Matarrese P, Scazzocchio B, Vari R, D'Archivio M, Straface E, et al. Wheat gliadin induces apoptosis of intestinal cells via an autocrine mechanism involving Fas-Fas ligand pathway. FEBS Lett 2003; 540: 117–24. Google Scholar

  • 19.

    Dolfini E, Elli L, Dasdia T, Bufardeci B, Colleoni MP, Costa B, et al. In vitro cytotoxic effect of bread wheat gliadin on the LoVo human adenocarcinoma cell line. Toxicol In Vitro 2002; 16: 331–7. CrossrefGoogle Scholar

  • 20.

    Weiser MM, Douglas AP. An alternative mechanism for gluten toxicity in coeliac disease. Lancet 1976; 1: 567–9. CrossrefGoogle Scholar

  • 21.

    Rocca E, Paganuzzi Stammati A, Zampaglioni F, Zucco F. Effects of gliadin-derived peptides from bread and durum wheats on in vitro cultures of human cell lines. Implications for coeliac disease pathogenesis. Toxicol Lett 1983; 16: 331–8. CrossrefGoogle Scholar

  • 22.

    Hudson DA, Cornell HJ, Purdham DR, Rolles CJ. Non-specific cytotoxicity of wheat gliadin components towards cultured human cells. Lancet 1976; 1: 339–41. CrossrefGoogle Scholar

  • 23.

    Clemente MG, De Virgiliis S, Kang JS, Macatagney R, Musu MP, Di Pierro MR, et al. Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function. Gut 2003; 52: 218–23. CrossrefGoogle Scholar

  • 24.

    Sjolander A, Magnusson KE. Effects of wheat germ agglutinin on the cellular content of filamentous actin in intestine 407 cells. Eur J Cell Biol 1988; 47: 32–5. Google Scholar

  • 25.

    Glenney JR Jr, Glenney P. Comparison of Ca ++-regulated events in the intestinal brush border. J Cell Biol 1985; 100: 754–63. CrossrefGoogle Scholar

  • 26.

    Dolfini E, Elli L, Ferrero S, Braidotti P, Roncoroni L, Dasdia T, et al. Bread wheat gliadin cytotoxicity: a new three-dimensional cell model. Scand J Clin Lab Invest 2003; 63: 135–41. CrossrefGoogle Scholar

  • 27.

    Walker-Smith J. Revised criteria for diagnosis of coeliac disease. Report of Working Group of European Society of Paediatric Gastroenterology and Nutrition. Arch Dis Child 1990; 65: 909–11. Google Scholar

  • 28.

    Rivabene R, Mancini E, De Vincenzi M. In vitro cytotoxic effect of wheat gliadin-derived peptides on the Caco-2 intestinal cell line is associated with intracellular oxidative imbalance: implications for coeliac disease. Biochim Biophys Acta 1999; 1453: 152–60. Google Scholar

  • 29.

    Elli L, Dolfini E, Bardella MT. Gliadin cytotoxicity and in vitro cell cultures. Toxicol Lett 2003; 146: 1–8. CrossrefGoogle Scholar

  • 30.

    Stahlberg MR, Hietanen E, Maki M. Mucosal biotransformation rates in the small intestine of children. Gut 1988; 29: 1058–63. CrossrefGoogle Scholar

  • 31.

    Odetti P, Valentini S, Aragno I, Garibaldi S, Pronzato MA, Rolandi E, et al. Oxidative stress in subjects affected by celiac disease. Free Radic Res 1998; 29: 17–24. Google Scholar

  • 32.

    Lavy A, Ben Amotz A, Aviram M. Increased susceptibility to undergo lipid peroxidation of chylomicrons and low-density lipoprotein in celiac disease. Ann Nutr Metab 1993; 37: 68–74. CrossrefGoogle Scholar

  • 33.

    van Straaten EA, Koster-Kamphuis L, Bovee-Oudenhoven IM, van der Meer R, Forget PP. Increased urinary nitric oxide oxidation products in children with active coeliac disease. Acta Paediatr 1999; 88: 528–31. CrossrefGoogle Scholar

  • 34.

    Maiuri MC, De Stefano D, Mele G, Iovine B, Bevilacqua MA, Greco L, et al. Gliadin increases iNOS gene expression in interferon-gamma-stimulated RAW 264.7 cells through a mechanism involving NF-kappa B. Naunyn Schmiedebergs Arch Pharmacol 2003; 368: 63–71. Google Scholar

  • 35.

    Liu RH, Hotchkiss JH. Potential genotoxicity of chronically elevated nitric oxide: a review. Mutat Res 1995; 339: 73–89. Google Scholar

  • 36.

    Murray IA, Daniels I, Coupland K, Smith JA, Long RG. Increased activity and expression of iNOS in human duodenal enterocytes from patients with celiac disease. Am J Physiol Gastrointest Liver Physiol 2002; 283: G319–26. Google Scholar

  • 37.

    Parks WC, Wilson CL, Lopez-Boado YS. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 2004; 4: 617–29. CrossrefGoogle Scholar

  • 38.

    Daum S, Bauer U, Foss HD, Schuppan D, Stein H, Riecken EO, et al. Increased expression of mRNA for matrix metalloproteinases-1 and -3 and tissue inhibitor of metalloproteinases-1 in intestinal biopsy specimens from patients with coeliac disease. Gut 1999; 44: 17–25. Google Scholar

  • 39.

    Salmela MT, MacDonald TT, Black D, Irvine B, Zhuma T, Saarialho-Kere U, et al. Upregulation of matrix metalloproteinases in a model of T cell mediated tissue injury in the gut: analysis by gene array and in situ hybridisation. Gut 2002; 51: 540–7. CrossrefGoogle Scholar

  • 40.

    Pender SL, Fell JM, Chamow SM, Ashkenazi A, MacDonald TT. A p55 TNF receptor immunoadhesin prevents T cell-mediated intestinal injury by inhibiting matrix metalloproteinase production. J Immunol 1998; 160: 4098–103. Google Scholar

  • 41.

    Pender SL, Tickle SP, Docherty AJ, Howie D, Wathen NC, MacDonald TT. A major role for matrix metalloproteinases in T cell injury in the gut. J Immunol 1997; 158: 1582–90. Google Scholar

  • 42.

    Salmela MT, Pender SL, Reunala T, MacDonald T, Saarialho-Kere U. Parallel expression of macrophage metalloelastase (MMP-12) in duodenal and skin lesions of patients with dermatitis herpetiformis. Gut 2001; 48: 496–502. CrossrefGoogle Scholar

  • 43.

    Ye S. Polymorphism in matrix metalloproteinase gene promoters: implication in regulation of gene expression and susceptibility of various diseases. Matrix Biol 2000; 19: 623–9. CrossrefGoogle Scholar

  • 44.

    Louka AS, Stensby EK, Ek J, Gudjonsdottir AH, Ascher H, Sollid LM. Coeliac disease candidate genes: no association with functional polymorphisms in matrix metalloproteinase 1 and 3 gene promoters. Scand J Gastroenterol 2002; 37: 931–5. Google Scholar

  • 45.

    Wright NA, Morley AR, Appleton DR, Marks JM, Douglas AP, Watson AJ. Measurement of cell production rate in the human small bowel. Pathol Microbiol (Basel) 1973; 39: 251–3. Google Scholar

  • 46.

    Wright N, Watson A, Morley A, Appleton D, Marks J, Douglas A. The cell cycle time in the flat (avillous) mucosa of the human small intestine. Gut 1973; 14: 603–6. CrossrefGoogle Scholar

  • 47.

    Wright N, Watson A, Morley A, Appleton D, Marks J. Cell kinetics in flat (avillous) mucosa of the human small intestine. Gut 1973; 14: 701–10. CrossrefGoogle Scholar

  • 48.

    Savidge TC, Walker-Smith JA, Phillips AD. Intestinal proliferation in coeliac disease: looking into the crypt. Gut 1995; 36: 321–3. CrossrefGoogle Scholar

  • 49.

    Diosdado B, Wapenaar MC, Franke L, Duran KJ, Goerres MJ, Hadithi M, et al. A microarray screen for novel candidate genes in coeliac disease pathogenesis. Gut 2004; 53: 944–51. CrossrefGoogle Scholar

  • 50.

    Wice BM, Gordon JI. A tetraspan membrane glycoprotein produced in the human intestinal epithelium and liver that can regulate cell density-dependent proliferation. J Biol Chem 1995; 270: 21907–18. CrossrefGoogle Scholar

  • 51.

    Salvati VM, Bajaj-Elliott M, Poulsom R, Mazzarella G, Lundin KE, Nilsen EM, et al. Keratinocyte growth factor and coeliac disease. Gut 2001; 49: 176–81. CrossrefGoogle Scholar

  • 52.

    Bach SP, Renehan AG, Potten CS. Stem cells: the intestinal stem cell as a paradigm. Carcinogenesis 2000; 21: 469–76. CrossrefGoogle Scholar

  • 53.

    Lionetti P, Pazzaglia A, Moriondo M, Azzari C, Resti M, Amorosi A, et al. Differing patterns of transforming growth factor-beta expression in normal intestinal mucosa and in active celiac disease. J Pediatr Gastroenterol Nutr 1999; 29: 308–13. CrossrefGoogle Scholar

  • 54.

    Yamamoto K, Fujiyama Y, Andoh A, Bamba T, Okabe H. Oxidative stress increases MICA and MICB gene expression in the human colon carcinoma cell line (CaCo-2). Biochim Biophys Acta 2001; 1526: 10–2. Google Scholar

  • 55.

    Hojilla CV, Mohammed FF, Khokha R. Matrix metallo-proteinases and their tissue inhibitors direct cell fate during cancer development. Br J Cancer 2003; 89: 1817–21. CrossrefGoogle Scholar

  • 56.

    Babron MC, Nilsson S, Adamovic S, Naluai AT, Wahlstrom J, Ascher H, et al. Meta and pooled analysis of European coeliac disease data. Eur J Hum Genet 2003; 11: 828–34. CrossrefGoogle Scholar

  • 57.

    Holopainen P, Mustalahti K, Uimari P, Collin P, Maki M, Partanen J. Candidate gene regions and genetic heterogeneity in gluten sensitivity. Gut 2001; 48: 696–701. CrossrefGoogle Scholar

  • 58.

    Naluai AT, Nilsson S, Gudjonsdottir AH, Louka AS, Ascher H, Ek J, et al. Genome-wide linkage analysis of Scandinavian affected sib-pairs supports presence of susceptibility loci for celiac disease on chromosomes 5 and 11. Eur J Hum Genet 2001; 9: 938–44. CrossrefGoogle Scholar

  • 59.

    Liu J, Juo SH, Holopainen P, Terwilliger J, Tong X, Grunn A, et al. Genomewide linkage analysis of celiac disease in Finnish families. Am J Hum Genet 2002; 70: 51–9. CrossrefGoogle Scholar

  • 60.

    Rioux JD, Karinen H, Kocher K, McMahon SG, Karkkainen P, Janatuinen E, et al. Genomewide search and association studies in a Finnish celiac disease population: identification of a novel locus and replication of the HLA and CTLA4 loci. Am J Med Genet 2004; 130A: 345–50. Google Scholar

  • 61.

    Greco L, Corazza G, Babron MC, Clot F, Fulchignoni-Lataud MC, Percopo S, et al. Genome search in celiac disease. Am J Hum Genet 1998; 62: 669–75. CrossrefGoogle Scholar

  • 62.

    Greco L, Babron MC, Corazza GR, Percopo S, Sica R, Clot F, et al. Existence of a genetic risk factor on chromosome 5q in Italian coeliac disease families. Ann Hum Genet 2001; 65: 35–41. CrossrefGoogle Scholar

  • 63.

    Zhong F, McCombs CC, Olson JM, Elston RC, Stevens FM, McCarthy CF, et al. An autosomal screen for genes that predispose to celiac disease in the western counties of Ireland. Nat Genet 1996; 14: 329–33. CrossrefGoogle Scholar

  • 64.

    King AL, Yiannakou JY, Brett PM, Curtis D, Morris MA, Dearlove AM, et al. A genome-wide family-based linkage study of coeliac disease. Ann Hum Genet 2000; 64: 479–90. CrossrefGoogle Scholar

  • 65.

    Neuhausen SL, Feolo M, Camp NJ, Farnham J, Book L, Zone JJ. Genome-wide linkage analysis for celiac disease in North American families. Am J Med Genet 2002; 111: 1–9. CrossrefGoogle Scholar

  • 66.

    van Belzen MJ, Vrolijk MM, Meijer JW, Crusius JB, Pearson PL, Sandkuijl LA, et al. A genomewide screen in a four-generation Dutch family with celiac disease: evidence for linkage to chromosomes 6 and 9. Am J Gastroenterol 2004; 99: 466–71. CrossrefGoogle Scholar

  • 67.

    Van Belzen MJ, Meijer JW, Sandkuijl LA, Bardoel AF, Mulder CJ, Pearson PL, et al. A major non-HLA locus in celiac disease maps to chromosome 19. Gastroenterology 2003; 125: 1032–41. Google Scholar

  • 68.

    Woolley N, Holopainen P, Ollikainen V, Mustalahti K, Maki M, Kere J, et al. A new locus for coeliac disease mapped to chromosome 15 in a population isolate. Hum Genet 2002; 111: 40–5. Google Scholar

  • 69.

    Cardon LR, Abecasis GR. Using haplotype blocks to map human complex trait loci. Trends Genet 2003; 19: 135–40. CrossrefGoogle Scholar

  • 70.

    The International HapMap Project. Nature 2003;426:789–96. Google Scholar

  • 71.

    Hinds DA, Stuve LL, Nilsen GB, Halperin E, Eskin E, Ballinger DG, et al. Whole-genome patterns of common DNA variation in three human populations. Science 2005; 307: 1072–9. Google Scholar

  • 72.

    Quackenbush J. Computational analysis of microarray data. Nat Rev Genet 2001; 2: 418–27. CrossrefGoogle Scholar

  • 73.

    Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, et al. Minimum information about a microarray experiment (MIAME) – toward standards for microarray data. Nat Genet 2001; 29: 365–71. CrossrefGoogle Scholar

  • 74.

    Parkinson H, Sarkans U, Shojatalab M, Abeygunawardena N, Contrino S, Coulson R, et al. ArrayExpress – a public repository for microarray gene expression data at the EBI. Nucleic Acids Res 2005; 33: D553–5. Google Scholar

  • 75.

    Juuti-Uusitalo K, Maki M, Kaukinen K, Collin P, Visakorpi T, Vihinen M, et al. cDNA microarray analysis of gene expression in coeliac disease jejunal biopsy samples. J Autoimmun 2004; 22: 249–65. CrossrefGoogle Scholar

  • 76.

    Diosdado B, Stepniak DT, Monsuur AJ, Franke L, Wapenaar MC, Mearin ML, et al. No genetic association of the human prolyl endopeptidase gene found in the Dutch celiac disease population. Am J Physiol Gastrointest Liver Physiol 2005 (doi:10.1152/ajpgi.00056.2005). In press. CrossrefGoogle Scholar

  • 77.

    MacBeath G, Schreiber SL. Printing proteins as microarrays for high-throughput function determination. Science 2000; 289: 1760–3. Google Scholar

  • 78.

    Kwon Y, Han Z, Karatan E, Mrksich M, Kay BK. Anti-body arrays prepared by cutinase-mediated immobilization on self-assembled monolayers. Anal Chem 2004; 76: 5713–20. CrossrefGoogle Scholar

  • 79.

    Bogdanov B, Smith RD. Proteomics by FTICR mass spectrometry: top down and bottom up. Mass Spectrom Rev 2005; 24: 168–200. CrossrefGoogle Scholar

  • 80.

    Journet A, Ferro M. The potentials of MS-based subproteomic approaches in medical science: the case of lysosomes and breast cancer. Mass Spectrom Rev 2004; 23: 393–442. CrossrefGoogle Scholar

  • 81.

    Yeo S, Roh GS, Kim DH, Lee JM, Seo SW, Cho JW, et al. Quantitative profiling of plasma peptides in asthmatic mice using liquid chromatography and mass spectrometry. Proteomics 2004; 4: 3308–17. CrossrefGoogle Scholar

  • 82.

    Orru S, Caputo I, D'Amato A, Ruoppolo M, Esposito C. Proteomics identification of acyl-acceptor and acyl-donor substrates for transglutaminase in a human intestinal epithelial cell line. Implications for celiac disease. J Biol Chem 2003; 278: 31766–73. Google Scholar

  • 83.

    Ruoppolo M, Orru S, D'Amato A, Francese S, Rovero P, Marino G, et al. Analysis of transglutaminase protein substrates by functional proteomics. Protein Sci 2003; 12: 1290–7. CrossrefGoogle Scholar

  • 84.

    Stulik J, Hernychova L, Porkertova S, Pozler O, Tuckova L, Sanchez D, et al. Identification of new celiac disease autoantigens using proteomic analysis. Proteomics 2003; 3: 951–6. CrossrefGoogle Scholar

  • 85.

    Vidal M. A biological atlas of functional maps. Cell 2001; 104: 333–9. CrossrefGoogle Scholar

  • 86.

    Ishii N, Robert M, Nakayama Y, Kanai A, Tomita M. Toward large-scale modeling of the microbial cell for computer simulation. J Biotechnol 2004; 113: 281–94. CrossrefGoogle Scholar

  • 87.

    Franke L, van Bakel H, Diosdado B, van Belzen M, Wapenaar M, Wijmenga C. TEAM: a tool for the integration of expression, and linkage and association maps. Eur J Hum Genet 2004; 12: 633–8. CrossrefGoogle Scholar

  • 88.

    Roses AD. Pharmacogenetics and drug development: the path to safer and more effective drugs. Nat Rev Genet 2004; 5: 645–56. Google Scholar

  • 89.

    Shan L, Molberg O, Parrot I, Hausch F, Filiz F, Gray GM, et al. Structural basis for gluten intolerance in celiac sprue. Science 2002; 297: 2275–9. Google Scholar

  • 90.

    Senger S, Luongo D, Maurano F, Mazzeo MF, Siciliano RA, Gianfrani C, et al. Intranasal administration of a recombinant alpha-gliadin down-regulates the immune response to wheat gliadin in DQ8 transgenic mice. Immunol Lett 2003; 88: 127–34. Google Scholar

  • 91.

    Vader LW, Stepniak DT, Bunnik EM, Kooy YM, de Haan W, Drijfhout JW, et al. Characterization of cereal toxi-city for celiac disease patients based on protein homology in grains. Gastroenterology 2003; 125: 1105–13. CrossrefGoogle Scholar

  • 92.

    Wu J, Alizadeh BZ, Veen TV, Meijer JW, Mulder CJ, Pena AS. Association of FAS (TNFRSF6)-670 gene polymorphism with villous atrophy in coeliac disease. World J Gastroenterol 2004; 10: 717–20. CrossrefGoogle Scholar

  • 93.

    Lopez-Vazquez A, Rodrigo L, Fuentes D, Riestra S, Bousono C, Garcia-Fernandez S, et al. MHC class I chain related gene A (MICA) modulates the development of coeliac disease in patients with the high risk heterodimer DQA1*0501/DQB1*0201. Gut 2002; 50: 336–40. Google Scholar

  • 94.

    Rueda B, Pascual M, Lopez-Nevot MA, Koeleman BP, Ortega E, Maldonado J, et al. Association of MICA-A5.1 allele with susceptibility to celiac disease in a family study. Am J Gastroenterol 2003; 98: 359–62. Google Scholar

  • 95.

    Martin-Pagola A, Ortiz L, Perez de Nanclares G, Vitoria JC, Castano L, Bilbao JR. Analysis of the expression of MICA in small intestinal mucosa of patients with celiac disease. J Clin Immunol 2003; 23: 498–503. CrossrefGoogle Scholar

  • 96.

    Maiuri L, Ciacci C, Auricchio S, Brown V, Quaratino S, Londei M. Interleukin 15 mediates epithelial changes in celiac disease. Gastroenterology 2000; 119: 996–1006. CrossrefGoogle Scholar

  • 97.

    Mention JJ, Ben Ahmed M, Begue B, Barbe U, Verkarre V, Asnafi V, et al. Interleukin 15: a key to disrupted intraepithelial lymphocyte homeostasis and lympho-magenesis in celiac disease. Gastroenterology 2003; 125: 730–45. CrossrefGoogle Scholar

  • 98.

    Seegers D, Borm ME, van Belzen MJ, Mulder CJ, Bailing J, Crusius JB, et al. IL12B and IRF1 gene polymorphisms and susceptibility to celiac disease. Eur J Immunogenet 2003; 30: 421–5. Google Scholar

  • 99.

    Wapenaar MC, van Belzen MJ, Fransen JH, Sarasqueta AF, Houwen RH, Meijer JW, et al. The interferon gamma gene in celiac disease: augmented expression correlates with tissue damage but no evidence for genetic susceptibility. J Autoimmun 2004; 23: 183–90. CrossrefGoogle Scholar

  • 100.

    Lahat N, Shapiro S, Karban A, Gerstein R, Kinarty A, Lerner A. Cytokine profile in coeliac disease. Scand J Immunol 1999; 49: 441–6. CrossrefGoogle Scholar

  • 101.

    Monteleone I, Monteleone G, Del Vecchio Blanco G, Vavassori P, Cucchiara S, MacDonald TT, et al. Regulation of the T helper cell type 1 transcription factor T-bet in coeliac disease mucosa. Gut 2004; 53: 1090–5. Google Scholar

  • 102.

    McManus R, Moloney M, Borton M, Finch A, Chuan YT, Lawlor E, et al. Association of celiac disease with microsatellite polymorphisms close to the tumor necrosis factor genes. Hum Immunol 1996; 45: 24–31. CrossrefGoogle Scholar

  • 103.

    van Belzen MJ, Mulder CJ, Pearson PL, Houwen RH, Wijmenga C. The tissue transglutaminase gene is not a primary factor predisposing to celiac disease. Am J Gastroenterol 2001; 96: 3337–40. CrossrefGoogle Scholar

  • 104.

    Esposito C, Paparo F, Caputo I, Porta R, Salvati VM, Mazzarella G, et al. Expression and enzymatic activity of small intestinal tissue transglutaminase in celiac disease. Am J Gastroenterol 2003; 98: 1813–20. CrossrefGoogle Scholar

About the article

Corresponding author: Prof. Cisca Wijmenga, Complex Genetics Section, Department of Biomedical Genetics, Stratenum 2.117, University Medical Centre Utrecht, P.O. Box 85060 AT, 3508 AB Utrecht, The Netherlands Phone: +31-30 253 8427, Fax: +31-30 253 8479,


Received: 2005-01-13

Accepted: 2005-05-19

Published Online: 2005-08-22

Published in Print: 2005-07-01


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/CCLM.2005.117.

Export Citation

©2005 by Walter de Gruyter Berlin New York. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Salvador Pérez, Raquel Taléns-Visconti, Sergio Rius-Pérez, Isabela Finamor, and Juan Sastre
Free Radical Biology and Medicine, 2017, Volume 104, Page 75
[3]
Mikko Oittinen, Alina Popp, Kalle Kurppa, Katri Lindfors, Markku Mäki, Minna U. Kaikkonen, and Keijo Viiri
STEM CELLS, 2017, Volume 35, Number 2, Page 445
[4]
Paola Bressan and Peter Kramer
Frontiers in Human Neuroscience, 2016, Volume 10
[5]
Tolga Han Efe, Ahmet Goktug Ertem, Yusuf Coskun, Murat Bilgin, Engin Algul, Osman Beton, Lale Dinc Asarcikli, Mehmet Erat, Mehmet Ayturk, Ilhami Yuksel, and Ekrem Yeter
Heart, Lung and Circulation, 2016, Volume 25, Number 2, Page 160
[6]
Paolo Bergamo, Gianna Palmieri, Ennio Cocca, Ida Ferrandino, Marta Gogliettino, Antonio Monaco, Francesco Maurano, and Mauro Rossi
European Journal of Nutrition, 2016, Volume 55, Number 2, Page 729
[7]
Amelia Barilli, Bianca Maria Rotoli, Rossana Visigalli, and Valeria Dall'Asta
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2014, Volume 1842, Number 9, Page 1364
[8]
Kirsty Brown, Daniella DeCoffe, Erin Molcan, and Deanna L. Gibson
Nutrients, 2012, Volume 4, Number 12, Page 1095
[9]
Gianna Ferretti, Tiziana Bacchetti, Simona Masciangelo, and Letizia Saturni
Nutrients, 2012, Volume 4, Number 12, Page 243
[10]
Anne I. Lahdenperä, Karin Fälth-Magnusson, Lotta Högberg, Johnny Ludvigsson, and Outi Vaarala
Scandinavian Journal of Gastroenterology, 2014, Volume 49, Number 2, Page 145
[11]
Marzia Dolcino, Giovanna Zanoni, Caterina Bason, Elisa Tinazzi, Elisa Boccola, Enrico Valletta, Giovanna Contreas, Claudio Lunardi, and Antonio Puccetti
Immunologic Research, 2013, Volume 56, Number 2-3, Page 465
[12]
M. P. M. Adriaanse, G. J. Tack, V. Lima Passos, J. G. M. C. Damoiseaux, M. W. J. Schreurs, K. van Wijck, R. G. Riedl, A. A. M. Masclee, W. A. Buurman, C. J. J. Mulder, and A. C. E. Vreugdenhil
Alimentary Pharmacology & Therapeutics, 2013, Volume 37, Number 4, Page 482
[13]
Gianna Ferretti, Tiziana Bacchetti, Letizia Saturni, Nicola Manzella, Cinzia Candelaresi, Antonio Benedetti, and Antonio Di Sario
Journal of Lipids, 2012, Volume 2012, Page 1
[14]
Paolo Bergamo, Marta Gogliettino, Gianna Palmieri, Ennio Cocca, Francesco Maurano, Rosita Stefanile, Marco Balestrieri, Giuseppe Mazzarella, Chella David, and Mauro Rossi
Molecular Nutrition & Food Research, 2011, Volume 55, Number S2, Page S248
[15]
Inger Brandt, Simon Scharpé, and Anne-Marie Lambeir
Clinica Chimica Acta, 2007, Volume 377, Number 1-2, Page 50
[16]
K. Mollazadegan, M. Kugelberg, B. E. Lindblad, and J. F. Ludvigsson
American Journal of Epidemiology, 2011, Volume 174, Number 2, Page 195
[17]
Gianfranco Mamone, Gianluca Picariello, Francesco Addeo, and Pasquale Ferranti
Expert Review of Proteomics, 2011, Volume 8, Number 1, Page 95
[18]
Amanda J. MacFarlane and Patrick J. Stover
Nutrition Reviews, 2008, Volume 65, Page S157
[19]
K. Juuti-Uusitalo, M. Mäki, H. Kainulainen, J. Isola, and K. Kaukinen
Clinical & Experimental Immunology, 2007, Volume 150, Number 2, Page 294
[20]
D. Sánchez, L. Palová-Jelínková, J. Felsberg, M. Šimšová, A. Pekáriková, B. Pecharová, I. Swoboda, T. Mothes, C. J. J. Mulder, Z. Beneš, H. Tlaskalová-Hogenová, and L. Tučková
Clinical & Experimental Immunology, 2008, Volume 153, Number 3, Page 351

Comments (0)

Please log in or register to comment.
Log in