Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year

IMPACT FACTOR 2016: 3.432

CiteScore 2016: 2.21

SCImago Journal Rank (SJR) 2016: 1.000
Source Normalized Impact per Paper (SNIP) 2016: 1.112

See all formats and pricing
More options …
Volume 43, Issue 7 (Jul 2005)


Elevated levels of plasma homocysteine in postmenopausal women in Burkina Faso

Rosa Chillemi / Jacques Simpore / Silvia Persichilli / Angelo Minucci / Alfonsina D'Agata / Salvatore Musumeci
  • Department of Pharmacology, Gynaecology and Obstetrics, Paediatrics, University of Sassari and Institute of Population Genetics, CNR, Porto Conte (SS), Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-09-21 | DOI: https://doi.org/10.1515/CCLM.2005.131


Background: Low levels of plasma homocysteine have been found in children and adult populations living in Burkina Faso in association with a low prevalence of coronary heart disease. Methods: Based on this finding, the levels of plasma homocysteine and other thiols (cysteine, cysteinylglycine, glutathione) in postmenopausal women living in Burkina Faso were evaluated with the aim of investigating whether age and life conditions influence plasma homocysteine and other thiol levels. Results: It was found that in older postmenopausal women the mean level of homocysteine was higher (16.4±6.6 μmol/L) than in fertile women (6.8±1.2μmol/L) and that thisincrease was correlated with cysteine levels (166.6±44.6μmol/L). While the glutathione level in postmenopausal women was lower (3.6±2.3μmol/L) compared with fertile women (7.0±1.7μmol/L), cysteinylglycine levels were within the normal range (29.9±9.3μmol/L). No correlation was found between homocysteine levels and serum folate, vitamin B 12, vitamin B 6, cystatin C and serum creatinine levels. The older the women were, the higher were their plasma homocysteine levels: levels up to 20.2±9.1μmol/L were found in those >70years old. Conclusions: The elevated levels of homocysteine in the postmenopausal women of Burkina Faso must be viewed as a characteristic of older age and its metabolic consequences.

Keywords: Burkina Faso; homocysteine; postmenopausal women


  • 1.

    Scriver CR, Beaudet AL, Sly WS, Valle D. The metabolic and molecular bases of inherited disease, 7th ed. New York: McGraw Hill, 1995:1279–327. Google Scholar

  • 2.

    Mayer EL, Jacobsen DW, Robinson K. Hcy and coronary atherosclerosis J Am Coll Cardiol 1996; 27: 517–27. CrossrefGoogle Scholar

  • 3.

    Refsum H, Ueland PM, Nygard O, Vollset SE. Homocysteine and cardiovascular disease. Annu Rev Med 1998; 49: 31–62. CrossrefGoogle Scholar

  • 4.

    Neufeld EJ. Update on genetic risk factors for thrombosis and atherosclerotic vascular disease. Hematol Oncol Clin N Am 1998; 12: 1193–209. CrossrefGoogle Scholar

  • 5.

    Prasad K. Homocysteine, a risk factor for cardiovascular disease. Int J Angiol 1999; 8: 76–86. CrossrefGoogle Scholar

  • 6.

    Van den Berg M, Franken DG, Boers GH, Blom HJ, Jakobs C, Stehouwer CD, et al. Combined vitamin B 6 plus folic acid therapy in young patients with arteriosclerosis and hyperhomocysteinemia. J Vasc Surg 1994; 20: 933–40. Google Scholar

  • 7.

    Den Heijer M, Brouwer IA, Bos GM, Blom HJ, Van der Put NM, Spaans AP, et al. Vitamin supplementation reduces blood homocysteine levels: a controlled trial in patients with venous thrombosis and healthy volunteers. Arterioscl Thromb Vasc Biol 1998; 18: 356–61. CrossrefGoogle Scholar

  • 8.

    Ubbink JB, Vermaak WJ, Van der Merwe A, Becker PJ, Delport R, Potgieter HC. Vitamin requirements for treatment of hyperhomocysteinemia in humans. J Nutr 1994; 124: 1927–33. Google Scholar

  • 9.

    Malinow MR, Bostom AG, Krauss RM. Homocysteine, diet, and cardiovascular diseases: a statement for healthcare professionals from the Nutrition Committee, American Heart Association. Circulation 1999; 99: 178–82. CrossrefGoogle Scholar

  • 10.

    Simpore J, Pignatelli S, Barlati S, Malaguarnera M, Musumeci S. Plasma homocysteine concentrations in a healthy population living in Burkina Faso. Curr Ther Res 2000; 61: 659–68. CrossrefGoogle Scholar

  • 11.

    Bjorkegren K, Svardsudd K. Elevated serum levels of methylmalonic acid and homocysteine in elderly people. A population-based intervention study. J Intern Med 1999; 246: 603–11. Google Scholar

  • 12.

    Wouters MG, Moorrees MT, van der Mooren MJ, Blom HJ, Boers GH, Schellekens LA, et al. Plasma homo-cysteine and menopausal status. Eur J Clin Invest 1995; 25: 801–5. CrossrefGoogle Scholar

  • 13.

    Malaguarnera M, Pistone G, Motta M, Vinci E, Oreste G, Avellone G, et al. Elevated plasma total homocysteine in centenarians. Clin Chem Lab Med 2004; 42: 307–10. CrossrefGoogle Scholar

  • 14.

    Ligthart GJ, Corberand JX, Geertzen HG, Meinders AE, Knook DL, Hijmans W. Necessity of the assessment of health status in human immunogerontological studies: evaluation of the SENIEUR protocol. Mech Ageing Dev 1990; 55: 89–105. CrossrefGoogle Scholar

  • 15.

    Araki A, Sako Y. Determination of free and total homocysteine in human plasma by high-performance liquid chromatography with fluorescence detection. J Chromatogr 1987; 422: 43–52. Google Scholar

  • 16.

    Simpore J, Pignatelli S, Meli C, Malaguarnera M, Chillemi R, Musumeci S. Nutritional and racial determinants of the increase in plasma homocysteine levels after methionine loading. Curr Ther Res 2002; 63: 459–73. CrossrefGoogle Scholar

  • 17.

    Ubbink JB, Delport R, Vermaak WJ. Effective homocysteine metabolism may protect South African blacks against heart disease. Am J Clin Nutr 1996; 62: 802–8. Google Scholar

  • 18.

    Ubbink JB, Delport R, Vermaak WJ. Plasma homocysteine concentration in a population with a low coronary heart disease prevalence. J Nutr 1996; 126: 1254S–7S. Google Scholar

  • 19.

    Giles WH, Croft JB, Greenlund KJ, Ford ES, Kittner SJ. Total homocysteine concentration and the likelihood of nonfatal stroke: results from the Third National Health and Nutrition Examination Survey, 1988–1994. Stroke 1998; 29: 2473–7. CrossrefGoogle Scholar

  • 20.

    Joosten E, van den Berg A, Riezler R, Naurath HJ, Lindenbaum J, Stabler SP, et al. Metabolic evidence that deficiencies of vitamin B 12 (cobalamin), folate, and vitamin B 6 occur commonly in elderly people. Am J Clin Nutr 1993; 58: 468–76. Google Scholar

  • 21.

    Selhub J, Jacques PF, Wilson PW, Rush D, Rosenberg IH. Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. J Am Med Assoc 1993; 270: 2693–8. CrossrefGoogle Scholar

  • 22.

    Nilsson K, Gustafson L, Hultberg B. Plasma homocysteine is a sensitive marker for tissue deficiency of both cobalamines and folates in a psychogeriatric population. Dement Geriatr Cogn Disord 1999; 10: 476–82. CrossrefGoogle Scholar

  • 23.

    Sadewa AH, Sunarti, Sutomo R, Hayashi C, Lee MJ, Ayaki H, et al. The C677T mutation in the methylenetetrahydrofolate reductase gene among the Indonesian Javanese population. Kobe J Med Sci 2002; 48: 137–44. Google Scholar

  • 24.

    Botto LD, Yang Q. 5, 10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: a HuGE review. Am J Epidemiol 2000; 151: 862–77. Google Scholar

  • 25.

    Amouzou EK, Chabi NW, Adjalla CE, Rodriguez-Gueant RM, Feillet F, Villaume C, et al. High prevalence of hyper-homocysteinemia related to folate deficiency and the 677C→T mutation of the gene encoding methylenetetrahydrofolate reductase in coastal West Africa. Am J Clin Nutr 2004; 79: 619–24. Google Scholar

  • 26.

    Shaw GM, Rosen R, Finnel RH, Wasserman CR, Lammer EJ. Maternal vitamin use, genetic variation of infant methylenetetrahydrofolate reductase and risk for spina bifida. Am J Epidemiol 1998; 148: 30–7. Google Scholar

  • 27.

    Pallaud C, Stranieri C, Sass C, Siest G, Pignatti F, Visvikis S. Candidate gene polymorphisms in cardiovascular disease: a comparative study of frequencies between a French and an Italian population. Clin Chem Lab Med 2001; 39: 146–54. CrossrefGoogle Scholar

  • 28.

    Chillemi R, Zappacosta B, Simpore J, Persichilli S, Musumeci M, Musumeci S. Hyperhomocysteinemia in acute Plasmodium falciparum malaria: an effect of host-parasite interaction. Clin Chim Acta 2004; 348: 113–20. Google Scholar

  • 29.

    Ghandour H, Bagley PJ, Shemin D, Hsu N, Jacques PF, Dworkin L, et al. Distribution of plasma folate forms in hemodialysis patients receiving high daily doses of L-folinic or folic acid. Kidney Int 2002; 62: 2246–9. CrossrefGoogle Scholar

  • 30.

    Mizuno Y, Kawazu SI, Kano S, Watanabe N, Matsuura T, Ohtomo H. In-vitro uptake of vitamin A by Plasmodium falciparum. Ann Trop Med Parasitol 2003; 97: 237–43. CrossrefGoogle Scholar

  • 31.

    Delmas-Beauvieux MC, Peuchant E, Dumon MF, Receveur MC, Le Bras M, Clerc M. Relationship between red blood cell antioxidant enzymatic system status and lipoperoxidation during the acute phase of malaria. Clin Biochem 1995; 28: 163–9. CrossrefGoogle Scholar

  • 32.

    Droge W. The plasma redox state and ageing. Ageing Res Rev 2002; 1: 257–78. CrossrefGoogle Scholar

  • 33.

    Erden-Inal M, Sunal E, Kanbak G. Age-related changes in the glutathione redox system. Cell Biochem Funct 2002; 20: 61–6. CrossrefGoogle Scholar

  • 34.

    Schwenke DC. Aging, menopause, and free radicals. Semin Reprod Endocrinol 1998; 16: 281–308. CrossrefGoogle Scholar

  • 35.

    Spotila LD, Jacques PF, Berger PB, Ballman KV, Ellison RC, Rozen R. Age dependence of the influence of methylenetetrahydrofolate reductase genotype on plasma homocysteine level. Am J Epidemiol 2003; 158: 871–7. Google Scholar

  • 36.

    Mager A, Lalezari S, Shohat T, Birnbaum Y, Adler Y, Magal N, et al. Methylenetetrahydrofolate reductase genotypes and early-onset coronary artery disease. Circulation 1999; 100: 2406–10. CrossrefGoogle Scholar

  • 37.

    Sobczak A, Wardas W, Zielinska-Danch W, Pawlicki K. The influence of smoking on plasma homocysteine and cysteine levels in passive and active smokers. Clin Chem Lab Med 2004; 42: 408–14. CrossrefGoogle Scholar

  • 38.

    Pisciotta L, Cantafora A, Piana A, Masturzo P, Cerone R, Minniti G, et al. Physical activity modulates effects of some genetic polymorphisms affecting cardiovascular risk in men aged over 40years. Nutr Metab Cardiovasc Dis 2003; 13: 202–10. CrossrefGoogle Scholar

  • 39.

    Stehouwer CD, van Guldener C. Does homocysteine cause hypertension? Clin Chem Lab Med 2003; 41: 1408–11. CrossrefGoogle Scholar

  • 40.

    Prigge ST, Chiang PK. S-Adenosylhomocysteine hydrolase. In: Carmel R, Jacobsen DW, editors. Homocysteine in health and disease. Cambridge University Press, Cambridge, 2001:79–91. Google Scholar

  • 41.

    Riksen NP, Rongen GA, Blom HJ, Russel FG, Boers GH, Smits P. Potential role for adenosine in the pathogenesis of the vascular complications of hyperhomocysteinemia. Cardiovasc Res 2003; 59: 271–6. CrossrefGoogle Scholar

  • 42.

    Simorre B, Quere I, Berrut G, Chasse JF, Bellet H, Kamoun P, et al. Vascular complications of homocystinuria: a retrospective multicenter study. Rev Med Intern 2002; 23: 267–72. CrossrefGoogle Scholar

About the article

Corresponding author: Prof. Salvatore Musumeci, Department of Pharmacology, Gynaecology and Obstetrics, Paediatrics, University of Sassari, Viale San Pietro n. 43b, 07100 Sassari, Italy Phone: +39-360285505, Fax: +39-0957179690,

Received: 2005-02-21

Accepted: 2005-04-20

Published Online: 2011-09-21

Published in Print: 2005-07-01

Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/CCLM.2005.131.

Export Citation

©2005 by Walter de Gruyter Berlin New York. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Naureen Fatima, Syed Mohd Faisal, Swaleha Zubair, Sheelu Shafiq Siddiqui, Shagufta Moin, and Mohammad Owais
International Journal of Biological Macromolecules, 2017
Noé Yameogo, Bapio Valérie Elvira Jean Télesphore Bazie, Abdoul Karim Ouattara, Pouiré Yameogo, Tegwinde Rebeca Compaore, Dorcas Obiri-Yeboah, Florencia Wenkuuni Djigma, Simplice Damintoti Karou, and Jacques Simpore
Malaria Research and Treatment, 2017, Volume 2017, Page 1
Ashit K. Mukherjee, Sujoy K. Manna, Sanjit K. Roy, Manisha Chakraborty, Surajit Das, and Jnan P. Naskar
Journal of Environmental Science and Health, Part A, 2016, Volume 51, Number 11, Page 962
Lubov Kolesnikova, Natalya Semenova, Irina Madaeva, Larisa Suturina, Elena Solodova, Lyudmila Grebenkina, and Marina Darenskaya
Maturitas, 2015, Volume 81, Number 1, Page 83
Zoenabo Douamba, Cyrille Bisseye, Florencia W. Djigma, Tegwinde R. Compaoré, Valérie Jean Telesphore Bazie, Virginio Pietra, Jean-Baptiste Nikiema, and Jacques Simpore
Journal of Biomedicine and Biotechnology, 2012, Volume 2012, Page 1
Cecilia Zuppi ., Jacques Simpore ., Bruno Zappacosta ., Cinzia Carrozza ., Mariano Malaguarnera ., and Salvatore Musumeci .
Journal of Medical Sciences(Faisalabad), 2006, Volume 6, Number 5, Page 734
Maria Musumeci, Gianluca Vadalà, Giovanni Tringali, Elio Insirello, Anna Maria Roccazzello, Jacques Simpore, and Salvatore Musumeci
Journal of Bone and Mineral Metabolism, 2009, Volume 27, Number 4, Page 424

Comments (0)

Please log in or register to comment.
Log in